期刊文献+
共找到861篇文章
< 1 2 44 >
每页显示 20 50 100
Building a Cloud-Based Energy Storage System through Digital Transformation of Distributed Backup Battery in Mobile Base Stations 被引量:11
1
作者 Song Ci Yanglin Zhou +2 位作者 Yuan Xu Xingjian Diao Junwei Wang 《China Communications》 SCIE CSCD 2020年第4期42-50,共9页
Battery energy storage systems(ESS) have been widely used in mobile base stations(BS) as the main backup power source. Due to the large number of base stations, massive distributed ESSs have largely stayed in idle and... Battery energy storage systems(ESS) have been widely used in mobile base stations(BS) as the main backup power source. Due to the large number of base stations, massive distributed ESSs have largely stayed in idle and very difficult to achieve high asset utilization. In recent years, the fast-paced development of digital energy storage(DES) technology has revolutionized the traditional operation and maintenance of ESSs by transforming them into digital assets, further enabling battery energy storage services, raising up a new way to achieve a much higher utilization of such kind of largely idle ESS resources. In this paper, the disruptive DES technology will be introduced and its application under the context of mobile BSs will be studied, and then a cloud-based energy storage(CES) platform is proposed based on a large scale distributed DESs to provide a new cyber-enabled energy storage service to the local utility company. A real-world case study shows the effectiveness and efficiency of the CES platform. 展开更多
关键词 digital energy storage dynamic RECONFIGURABLE battery network energy DIGITIZATION software-defined battery system cloud energy storage
在线阅读 下载PDF
A distributed VSG control method for a battery energy storage system with a cascaded H-bridge in a grid-connected mode 被引量:6
2
作者 Yichi Cai Donglian Qi 《Global Energy Interconnection》 EI CAS CSCD 2022年第4期343-352,共10页
With the high penetration of renewable energy,new challenges,such as power fluctuation suppression and inertial support capability,have arisen in the power sector.Battery energy storage systems play an essential role ... With the high penetration of renewable energy,new challenges,such as power fluctuation suppression and inertial support capability,have arisen in the power sector.Battery energy storage systems play an essential role in renewable energy integration.In this paper,a distributed virtual synchronous generator(VSG)control method for a battery energy storage system(BESS)with a cascaded H-bridge converter in a grid-connected mode is proposed.The VSG is developed without communication dependence,and state-of-charge(SOC)balancing control is achieved using the distributed average algorithm.Owing to the low varying speed of SOC,the bandwidth of the distributed communication networks is extremely slow,which decreases the cost.Therefore,the proposed method can simultaneously provide inertial support and accurate SOC balancing.The stability is also proved using root locus analysis.Finally,simulations under different conditions are carried out to verify the effectiveness of the proposed method. 展开更多
关键词 VSG Cascaded H-bridge converters battery energy storage system Renewable energy integration
在线阅读 下载PDF
Battery Energy Storage to Strengthen the Wind Generator in Integrated Power System 被引量:2
3
作者 Sharad W. Mohod Mohan V. Aware 《Journal of Electronic Science and Technology》 CAS 2011年第1期23-30,共8页
The wind energy generation,utilization and its grid penetration in electrical grid are increasing world-wide.The wind generated power is always fluctuating due to its time varying nature and causing stability problem.... The wind energy generation,utilization and its grid penetration in electrical grid are increasing world-wide.The wind generated power is always fluctuating due to its time varying nature and causing stability problem.This weak interconnection of wind generating source in the electrical network affects the power quality and reliability.The localized energy storages shall compensate the fluctuating power and support to strengthen the wind generator in the power system.In this paper,it is proposed to control the voltage source inverter (VSI) in current control mode with energy storage,that is,batteries across the dc bus.The generated wind power can be extracted under varying wind speed and stored in the batteries.This energy storage maintains the stiff voltage across the dc bus of the voltage source inverter.The proposed scheme enhances the stability and reliability of the power system and maintains unity power factor.It can also be operated in stand-alone mode in the power system.The power exchange across the wind generation and the load under dynamic situation is feasible while maintaining the power quality norms at the common point of coupling.It strengthens the weak grid in the power system.This control strategy is evaluated on the test system under dynamic condition by using simulation.The results are verified by comparing the performance of controllers. 展开更多
关键词 battery energy storage power quality wind energy generating system.
在线阅读 下载PDF
Massive energy storage system for effective usage of renewable energy 被引量:3
4
作者 Kenji IBA 《Global Energy Interconnection》 EI CAS CSCD 2022年第3期301-308,共8页
The current energy trend indicates a strong thrust toward transforming renewable energy as a major power source.To achieve this mission,battery energy storage systems(BESSs)are indispensable.Although BESSs are expensi... The current energy trend indicates a strong thrust toward transforming renewable energy as a major power source.To achieve this mission,battery energy storage systems(BESSs)are indispensable.Although BESSs are expensive,cost reduction can be achieved by using BESSs for multiple purposes,such as load leveling,business continuity planning,frequency control,capacity market,arbitrage,and emergency power.In this paper,various applications of BESSs are classified.The possibility of achieving conflict-free combination of different applications is demonstrated.The total required energy storage capacity in Japan is estimated to be 150–200 GWh by 2030.The present status of NaS batteries for multipurpose use and new trends in battery-based businesses are introduced. 展开更多
关键词 battery energy storage system(bess) Renewable energy(RE) Multipurpose Use ARBITRAGE
在线阅读 下载PDF
Low-cost all-iron flow battery with high performance towards long-duration energy storage 被引量:2
5
作者 Xiaoqi Liu Tianyu Li +1 位作者 Zhizhang Yuan Xianfeng Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第10期445-451,I0011,共8页
Long duration energy storage(LDES)technologies are vital for wide utilization of renewable energy sources and increasing the penetration of these technologies within energy infrastructures.Herein,we propose a low-cost... Long duration energy storage(LDES)technologies are vital for wide utilization of renewable energy sources and increasing the penetration of these technologies within energy infrastructures.Herein,we propose a low-cost alkaline all-iron flow battery by coupling ferri/ferro-cyanide redox couple with ferric/ferrous-gluconate complexes redox couple.The designed all-iron flow battery demonstrates a coulombic efficiency of above 99%and an energy efficiency of~83%at a current density of80 m A cm^(-2),which can continuously run for more than 950 cycles.Most importantly,the battery demonstrates a coulombic efficiency of more than 99.0%and an energy efficiency of~83%for a long duration(~12,16 and 20 h per cycle)charge/discharge process.Benefiting from the low cost of iron electrolytes,the overall cost of the all-iron flow battery system can be reached as low as$76.11 per k Wh based on a10 h system with a power of 9.9 k W.This work provides a new option for next-generation cost-effective flow batteries for long duration large scale energy storage. 展开更多
关键词 Long-duration energy storage All-iron flow battery Iron-based complexes High performance GLUCONATE
在线阅读 下载PDF
Opportunities and challenges of organic flow battery for electrochemical energy storage technology 被引量:2
6
作者 Ziming Zhao Changkun Zhang Xianfeng Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第4期621-639,共19页
For flow batteries(FBs), the current technologies are still expensive and have relatively low energy density, which limits their large-scale applications. Organic FBs(OFBs) which employ organic molecules as redox-acti... For flow batteries(FBs), the current technologies are still expensive and have relatively low energy density, which limits their large-scale applications. Organic FBs(OFBs) which employ organic molecules as redox-active materials have been considered as one of the promising technologies for achieving lowcost and high-performance. Herein, we present a critical overview of the progress on the OFBs, including the design principles of key components(redox-active molecules, membranes, and electrodes) and the latest achievement in both aqueous and nonaqueous systems. Finally, future directions in explorations of the high-performance OFB for electrochemical energy storage are also highlighted. 展开更多
关键词 Electrochemical energy storage Flow battery Organic systems Organic redox-active molecules
在线阅读 下载PDF
Photoinduced Cu^(+)/Cu^(2+)interconversion for enhancing energy conversion and storage performances of CuO based Li-ion battery
7
作者 Qiuman Zhang Meng Wei +7 位作者 Qianwen Dong Qiongzhi Gao Xin Cai Shengsen Zhang Teng Yuan Feng Peng Yueping Fang Siyuan Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期83-91,共9页
Pursuing appropriate photo-active Li-ion storage materials and understanding their basic energy storage/conversion principle are pretty crucial for the rapidly developing photoassisted Li-ion batteries(PA-LIBs).Copper... Pursuing appropriate photo-active Li-ion storage materials and understanding their basic energy storage/conversion principle are pretty crucial for the rapidly developing photoassisted Li-ion batteries(PA-LIBs).Copper oxide(CuO)is one of the most popular candidates in both LIBs and photocatalysis.While CuO based PA-LIBs have never been reported yet.Herein,one-dimensional(1D)CuO nanowire arrays in situ grown on a three-dimensional(3D)copper foam support were employed as dualfunctional photoanode for both‘solar-to-electricity’and‘electricity-to-chemical’energy conversion in the PA-LIBs.It is found that light energy can be indeed stored and converted into electrical energy through the assembled CuO based PA-LIBs.Without external power source,the photo conversion efficiency of CuO based photocell reaches about 0.34%.Impressively,at a high current density of 4000 m A g^(-1),photoassisted discharge and charge specific capacity of CuO based PA-LIBs respectively receive 64.01%and 60.35%enhancement compared with the net electric charging and discharging process.Mechanism investigation reveals that photogenerated charges from CuO promote the interconversion between Cu^(2+)and Cu^(+)during the discharging/charging process,thus forcing the lithium storage reaction more completely and increasing the specific capacity of the PA-LIBs.This work can provide a general principle for the development of other high-efficient semiconductor-based PA-LIBs. 展开更多
关键词 Li-ion batteries energy conversion and storage Photo rechargeable Electrochemistry Copper oxide
在线阅读 下载PDF
Nanostructured energy materials for electrochemical energy conversion and storage: A review 被引量:38
8
作者 Xueqiang Zhang Xinbing Cheng Qiang Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第6期967-984,共18页
Nanostructured materials have received tremendous interest due to their unique mechanical/electrical properties and overall behavior contributed by the complex synergy of bulk and interfacial properties for efficient ... Nanostructured materials have received tremendous interest due to their unique mechanical/electrical properties and overall behavior contributed by the complex synergy of bulk and interfacial properties for efficient and effective energy conversion and storage. The booming development of nanotechnology affords emerging but effective tools in designing advanced energy material. We reviewed the significant progress and dominated nanostructured energy materials in electrochemical energy conversion and storage devices, including lithium ion batteries, lithium-sulfur batteries, lithium-oxygen batteries, lithium metal batteries, and supercapacitors. The use of nanostructured electrocatalyst for effective electrocatalysis in oxygen reduction and oxygen evolution reactions for fuel cells and metal-air batteries was also included. The challenges in the undesirable side reactions between electrolytes and electrode due to high electrode/electrolyte contact area, low volumetric energy density of electrode owing to low tap density, and uniform production of complex energy materials in working devices should be overcome to fully demonstrate the advanced energy nanostructures for electrochemical energy conversion and storage. The energy chemistry at the interfaces of nanostructured electrode/electrolyte is highly expected to guide the rational design and full demonstration of energy materials in a working device. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved. 展开更多
关键词 energy materials Lithium ion batteries Lithium sulfur batteries Lithium oxygen batteries Lithium metal SUPERCAPACITORS Oxygen reduction reaction Oxygen evolution reaction ELECTROCATALYSIS Nanostructures energy conversion and storage
在线阅读 下载PDF
Novel Insights into Energy Storage Mechanism of Aqueous Rechargeable Zn/MnO2 Batteries with Participation of Mn2+ 被引量:18
9
作者 Yongfeng Huang Jian Mou +4 位作者 Wenbao Liu Xianli Wang Liubing Dong Feiyu Kang Chengjun Xu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第3期227-239,共13页
Aqueous rechargeable Zn/MnO2 zinc-ion batteries(ZIBs)are reviving recently due to their low cost,non-toxicity,and natural abundance.However,their energy storage mechanism remains controversial due to their complicated... Aqueous rechargeable Zn/MnO2 zinc-ion batteries(ZIBs)are reviving recently due to their low cost,non-toxicity,and natural abundance.However,their energy storage mechanism remains controversial due to their complicated electrochemical reactions.Meanwhile,to achieve satisfactory cyclic stability and rate performance of the Zn/MnO2 ZIBs,Mn2+ is introduced in the electrolyte(e.g.,ZnSO4 solution),which leads to more complicated reactions inside the ZIBs systems.Herein,based on comprehensive analysis methods including electrochemical analysis and Pourbaix diagram,we provide novel insights into the energy storage mechanism of Zn/MnO2 batteries in the presence of Mn2+.A complex series of electrochemical reactions with the coparticipation of Zn2+,H+,Mn2+,SO42-,and OH-were revealed.During the first discharge process,co-insertion of Zn2+ and H+ promotes the transformation of MnO2 into ZnxMnO4,MnOOH,and Mn2O3,accompanying with increased electrolyte pH and the formation of ZnSO4·3 Zn(OH)2-5 H2O.During the subsequent charge process,ZnxMnO4,MnOOH,and Mn2O3 revert to a-MnO2 with the extraction of Zn2+ and H+,while ZnSO4·3Zn(OH)2·5H2O reacts with Mn2+ to form ZnMn3O7·3 H2O.In the following charge/discharge processes,besides aforementioned electrochemical reactions,Zn2+ reversibly insert into/extract from α-MnO2,ZnxMnO4,and ZnMn3O7·3H2O hosts;ZnSO4·3Zn(OH)2·5 H2O,Zn2Mn3O8,and ZnMn2O4 convert mutually with the participation of Mn2+.This work is believed to provide theoretical guidance for further research on high-performance ZIBs. 展开更多
关键词 Zinc-ion battery MNO2 CATHODE energy storage MECHANISM Phase evolution
在线阅读 下载PDF
Recent advances in energy storage mechanism of aqueous zinc-ion batteries 被引量:16
10
作者 Duo Chen Mengjie Lu +2 位作者 Dong Cai Hang Yang Wei Han 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期712-726,共15页
Aqueous rechargeable zinc-ion batteries(ZIBs)have recently attracted increasing research interest due to their unparalleled safety,fantastic cost competitiveness and promising capacity advantages compared with the com... Aqueous rechargeable zinc-ion batteries(ZIBs)have recently attracted increasing research interest due to their unparalleled safety,fantastic cost competitiveness and promising capacity advantages compared with the commercial lithium ion batteries.However,the disputed energy storage mechanism has been a confusing issue restraining the development of ZIBs.Although a lot of efforts have been dedicated to the exploration in battery chemistry,a comprehensive review that focuses on summarizing the energy storage mechanisms of ZIBs is needed.Herein,the energy storage mechanisms of aqueous rechargeable ZIBs are systematically reviewed in detail and summarized as four types,which are traditional Zn^(2+)insertion chemistry,dual ions co-insertion,chemical conversion reaction and coordination reaction of Zn^(2+)with organic cathodes.Furthermore,the promising exploration directions and rational prospects are also proposed in this review. 展开更多
关键词 Zinc-ion batteries energy storage mechanism Rechargeable aqueous battery Zn-MnO_(2)battery Electrolytic battery
在线阅读 下载PDF
Recent progress and perspectives on silicon anode:Synthesis and prelithiation for LIBs energy storage 被引量:18
11
作者 Yuanxing Zhang Borong Wu +3 位作者 Ge Mu Chengwei Ma Daobin Mu Feng Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第1期615-650,I0016,共37页
The ever-increasing environmental/energy crisis as well as the rapid upgrading of mobile devices had stimulated intensive research attention on promising alternative energy storage and conversion devices.Among these d... The ever-increasing environmental/energy crisis as well as the rapid upgrading of mobile devices had stimulated intensive research attention on promising alternative energy storage and conversion devices.Among these devices,alkali metal ion batteries,such as lithium-ion batteries(LIBs) had attracted increasing research attention due to its several advantages including,environmental friendliness,high power density,long cycle life and excellent reversibility.It had been widely used in consumer electronics,electric vehicles,and large power grids et ac.Silicon-based(silicon and their oxides,carbides) anodes had been widely studied.Its several advantages including low cost,high theoretical capacity,natural abundance,and environmental friendliness,which shows great potential as anodes of LIBs.In this review,we summarized the recently progress in the synthetic method of silicon matrix composites.The empirical method for prelithiation of silicon-based materials were also provided.Further,we also reviewed some novel characterization methods.Finally,the new design,preparation methods and properties of these nano materials were reviewed and compared.We hoped that this review can provide a general overview of recent progress and we briefly highlighted the current challenges and prospects,and will clarify the future trend of silicon anode LIBs research. 展开更多
关键词 Si anodes Lithium-ion batteries Prelithiation CHARACTERIZATION energy storage and conversion
在线阅读 下载PDF
Progress and prospect for NASICON-type Na3V2(PO4)3 forelectrochemical energy storage 被引量:9
12
作者 Qiong Zheng Hongming Yi +1 位作者 Xianfeng Li Huamin Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第6期1597-1617,共21页
Sodium-ion batteries (SIBs) have attracted increasing attention in the past decades, because of high over-all abundance of precursors, their even geographical distribution, and low cost. Na3V2(PO4)3 (NVP), atypi... Sodium-ion batteries (SIBs) have attracted increasing attention in the past decades, because of high over-all abundance of precursors, their even geographical distribution, and low cost. Na3V2(PO4)3 (NVP), atypical sodium super ion conductor (NASlCON)-based electrode material, exhibits pronounced structuralstability, exceptionally high ion conductivity, rendering it a most promising electrode for sodium storage.However. the comparatively low electronic conductivity makes the theoretical capacity of NVP cannot befully accessible even at comparatively low rates, presenting a major drawback for further practical ap-plications, especially when high rate capability is especially important. Thus, many endeavors have beenconformed to increase the surface and intrinsic electrical conductivity of NVP by coating the active mate-rials with a conductive carbon layer, downsizing the NVP particles, combining the NVP particle with vari-ous carbon materials and ion doping strategy. In this review, to get a better understanding on the sodiumstorage in NVP, we firstly present 4 distinct crystal structures in the temperature range of-30℃-225℃ namely α-NVP, β-NVP, β′-NVP and γ-NVP. Moreover, we give an overview of recent approaches to en-hance the surface electrical conductivity and intrinsic electrical conductivity of NVP. Finally, some poten-tial applications of NVP such as in all-climate environment and PHEV, EV fields have been prospected. 展开更多
关键词 Sodium ion batteries Na3 V2(PO4)3Crystal structure Electrical conductivity energy storage
在线阅读 下载PDF
Intrinsic Self-Healing Chemistry for Next-Generation Flexible Energy Storage Devices 被引量:9
13
作者 Xin Wan Tiansheng Mu Geping Yin 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第7期136-164,共29页
The booming wearable/portable electronic devices industry has stimulated the progress of supporting flexible energy storage devices.Excellent performance of flexible devices not only requires the component units of ea... The booming wearable/portable electronic devices industry has stimulated the progress of supporting flexible energy storage devices.Excellent performance of flexible devices not only requires the component units of each device to maintain the original performance under external forces,but also demands the overall device to be flexible in response to external fields.However,flexible energy storage devices inevitably occur mechanical damages(extrusion,impact,vibration)/electrical damages(overcharge,over-discharge,external short circuit)during longterm complex deformation conditions,causing serious performance degradation and safety risks.Inspired by the healing phenomenon of nature,endowing energy storage devices with self-healing capability has become a promising strategy to effectively improve the durability and functionality of devices.Herein,this review systematically summarizes the latest progress in intrinsic self-healing chemistry for energy storage devices.Firstly,the main intrinsic self-healing mechanism is introduced.Then,the research situation of electrodes,electrolytes,artificial interface layers and integrated devices based on intrinsic self-healing and advanced characterization technology is reviewed.Finally,the current challenges and perspective are provided.We believe this critical review will contribute to the development of intrinsic self-healing chemistry in the flexible energy storage field. 展开更多
关键词 Flexible energy storage Intrinsic self-healing chemistry Lithium-ion battery Supercapacitor Advanced characterizations
在线阅读 下载PDF
MXene-based materials for electrochemical energy storage 被引量:51
14
作者 Xu Zhang Zihe Zhang Zhen Zhou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第1期73-85,共13页
Rechargeable batteries and supercapacitors are widely investigated as the most important electrochemical energy storage devices nowadays due to the booming energy demand for electric vehicles and hand-held electronics... Rechargeable batteries and supercapacitors are widely investigated as the most important electrochemical energy storage devices nowadays due to the booming energy demand for electric vehicles and hand-held electronics. The large surface-area-to-volume ratio and internal surface areas endow two-dimensional(2D) materials with high mobility and high energy density; therefore, 2D materials are very promising candidates for Li ion batteries and supercapacitors with comprehensive investigations. In 2011, a new kind of 2D transition metal carbides, nitrides and carbonitrides, MXene, were successfully obtained from MAX phases. Since then about 20 different kinds of MXene have been prepared. Other precursors besides MAX phases and even other methods such as chemical vapor deposition(CVD) were also applied to prepare MXene, opening new doors for the preparation of new MXene. Their 2D nature and good electronic properties ensure the inherent advantages as electrode materials for electrochemical energy storage. In this review, we summarize the recent progress in the development of MXene with emphasis on the applications to electrochemical energy storage. Also, future perspective and challenges of MXene-based materials are briefly discussed regrading electrochemical energy storage. 展开更多
关键词 MXene2D materials Electrochemical energy storage Batteries Supercapacitors
在线阅读 下载PDF
Recent advances in 3D printed electrode materials for electrochemical energy storage devices 被引量:4
15
作者 Suhail Mubarak Duraisami Dhamodharan Hun-Soo Byun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期272-312,I0008,共42页
Electrochemical energy storage(EES)systems like batteries and supercapacitors are becoming the key power sources for attempts to change the energy dependency from inadequate fossil fuels to sustainable and renewable r... Electrochemical energy storage(EES)systems like batteries and supercapacitors are becoming the key power sources for attempts to change the energy dependency from inadequate fossil fuels to sustainable and renewable resources.Electrochemical energy storage devices(EESDs)operate efficiently as a result of the construction and assemblage of electrodes and electrolytes with appropriate structures and effective materials.Conventional manufacturing procedures have restrictions on regulating the morphology and architecture of the electrodes,which would influence the performance of the devices.3D printing(3DP)is an advanced manufacturing technology combining computer-aided design and has been recognised as an artistic method of fabricating different fragments of energy storage devices with its ability to precisely control the geometry,porosity,and morphology with improved specific energy and power densities.The capacity to create mathematically challenging shape or configuration designs and high-aspect-ratio 3D architectures makes 3D printing technology unique in its benefits.Nevertheless,the control settings,interactive manufacturing processes,and protracted post-treatments will affect the reproducibility of the printed components.More intelligent software,sophisticated control systems,high-grade industrial equipment,and post-treatment-free methods are necessary to develop.3D printed(3DPd)EESDs necessitate dynamic printable materials and composites that are influenced by performance criteria and fundamental electrochemistry.Herein,we review the recent advances in 3DPd electrodes for EES applications.The emphasis is on printable material synthesis,3DP techniques,and the electrochemical performance of printed electrodes.For the fabrication of electrodes,we concentrate on major 3DP technologies such as direct ink writing(DIW),inkjet printing(IJP),fused deposition modelling(FDM),and stereolithography3DP(SLA).The benefits and drawbacks of each 3DP technology are extensively discussed.We provide an outlook on the integration of synthesis of emerging nanomaterials and fabrication of complex structures from micro to macroscale to construct highly effective electrodes for the EESDs. 展开更多
关键词 3D printing 3D printed electrodes Electrochemical energy storage Lithium-ion battery Zinc-ion battery SUPERCAPACITOR
在线阅读 下载PDF
Single-atom catalysts for electrochemical energy storage and conversion 被引量:4
16
作者 Wei Ma Hao Wan +2 位作者 Lili Zhang Jin You Zheng Zhen Zhou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第12期170-194,I0004,共26页
The expedited consumption of fossil fuels has triggered broad interest in the fabrication of novel catalysts for electrochemical energy storage and conversion. Especially, single-atom catalysts(SACs) have attracted mo... The expedited consumption of fossil fuels has triggered broad interest in the fabrication of novel catalysts for electrochemical energy storage and conversion. Especially, single-atom catalysts(SACs) have attracted more attention owing to their high specific surface areas and abundant active centers. This review summarizes recent synthetic strategies to fabricate SACs with different metal loadings on various supports, and the structural influence of supports on metal loading. Then, the functions of SACs are illustrated on electronic structure and electrocatalysis;the isolated SACs with an unsaturated coordination environment generally accelerate the electrocatalytic process and promote the selectivity. The applications of SACs to some typical electrocatalytic reactions are also introduced in detail, as well as to electrochemical energy storage and conversion systems. Finally, the challenges and the perspectives of SACs are discussed for future exploration. 展开更多
关键词 Single-atom catalysts energy storage and conversion ELECTROCATALYSIS BATTERIES Fuel cells
在线阅读 下载PDF
Thermal runaway propagation behavior of the Cell-to-Pack battery system 被引量:3
17
作者 Huaibin Wang Qinzheng Wang +9 位作者 Zhenyang Zhao Changyong Jin Chengshan Xu Wensheng Huang Zhuchen Yuan Shuyu Wang Yang Li Yanhong Zhao Junli Sun Xuning Feng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期162-172,共11页
Structurally compact battery packs significantly improve the driving range of electric vehicles.Technologies like Cell-to-Pack increase energy density by 15%-20%.However,the safety implications of multiple tightly-pac... Structurally compact battery packs significantly improve the driving range of electric vehicles.Technologies like Cell-to-Pack increase energy density by 15%-20%.However,the safety implications of multiple tightly-packed battery cells still require in-depth research.This paper studies thermal runaway propagation behavior in a Cell-to-Pack system and assesses propagation speed relative to other systems.The investigation includes temperature response,extent of battery damage,pack structure deformation,chemical analysis of debris,and other considerations.Results suggest three typical patterns for the thermal runaway propagation process:ordered,disordered,and synchronous.The synchronous propagation pattern displayed the most severe damage,indicating energy release is the largest under the synchronous pattern.This study identifies battery deformation patterns,chemical characteristics of debris,and other observed factors that can both be applied to identify the cause of thermal runaway during accident investigations and help promote safer designs of large battery packs used in large-scale electric energy storage systems. 展开更多
关键词 energy storage Cell-to-Pack Lithium-ion battery Thermal runaway battery safety
在线阅读 下载PDF
Multivalent metal-sulfur batteries for green and cost-effective energy storage:Current status and challenges 被引量:2
18
作者 Yue Yang Haoyi Yang +2 位作者 Xinran Wang Ying Bai Chuan Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第1期144-165,I0005,共23页
Multivalent metal-sulfur(M-S,where M=Mg,Al,Ca,Zn,Fe,etc.)batteries offer unique opportunities to achieve high specific capacity,elemental abundancy and cost-effectiveness beyond lithium-ion batteries(LIBs).However,the... Multivalent metal-sulfur(M-S,where M=Mg,Al,Ca,Zn,Fe,etc.)batteries offer unique opportunities to achieve high specific capacity,elemental abundancy and cost-effectiveness beyond lithium-ion batteries(LIBs).However,the slow diffusion of multivalent-metal ions and the shuttle of soluble polysulfide result in impoverished reversible capacity and limited cycle performance of M-S(Mg-S,Al-S,Ca-S,Zn-S,Fe-S,etc.)batteries.It is a necessity to optimize the electrochemical performance,while deepening the understanding of the unique electrochemical reaction mechanism,such as the intrinsic multi-electron reaction process,polysulfides dissoluti on and the in stability of metal an odes.To solve these problems,we have summarized the state-of-the-art progress of current M-S batteries,and sorted out the existing challen ges for different multivalent M-S batteries according to sulfur cathode,electrolytes,metallic an ode and current collectors/separators,respectively.In this literature,we have surveyed and exemplified the strategies developed for better M-S batteries to strengthen the application of green,cost-effective and high energy density M-S batteries. 展开更多
关键词 Multivale nt metal-sulfur batteries COST-EFFECTIVENESS Green energy storage Shuttle effect Electrolyte
在线阅读 下载PDF
Non-aqueous lithium bromine battery of high energy density with carbon coated membrane 被引量:1
19
作者 Xiaoli Xi Xianfeng Li +4 位作者 Chenhui Wang Qinzhi Lai Yuanhui Cheng Pengcheng Xu Huamin Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第4期639-646,共8页
Flow batteries with high energy density and long cycle life have been pursued to advance the progress of energy storage and grid application. Non-aqueous batteries with wide voltage windows represent a promising techn... Flow batteries with high energy density and long cycle life have been pursued to advance the progress of energy storage and grid application. Non-aqueous batteries with wide voltage windows represent a promising technology without the limitation of water electrolysis, but they suffer from low electrolyte concentration and unsatisfactory battery performance. Here, a non-aqueous lithium bromine rechargeable battery is proposed, which is based on Br;/Br;and Li;/Li as active redox pairs, with fast redox kinetics and good stability. The Li/Br battery combines the advantages of high output voltage(;.1 V),electrolyte concentration(3.0 mol/L), maximum power density(29.1 m W/cm;) and practical energy density(232.6 Wh/kg). Additionally, the battery displays a columbic efficiency(CE) of 90.0%, a voltage efficiency(VE) of 88.0% and an energy efficiency(EE) of 80.0% at 1.0 m A/cm;after continuously running for more than 1000 cycles, which is by far the longest cycle life reported for non-aqueous flow batteries. 展开更多
关键词 NON-AQUEOUS battery LITHIUM BROMINE energy-storage
在线阅读 下载PDF
Performance of redox flow battery systems in Japan
20
作者 Shibata Toshikazu Kumamoto Takahiro +2 位作者 Nagaoko Yoshiyuki Kawase Kazunori Yano Keiji 《储能科学与技术》 CAS 2013年第3期233-236,共4页
Renewable energies, such as solar and wind power, are increasingly being introduced as alternative energy sources on a glosbal scale toward a low-carbon society. For the next generation power network, which uses a lar... Renewable energies, such as solar and wind power, are increasingly being introduced as alternative energy sources on a glosbal scale toward a low-carbon society. For the next generation power network, which uses a large number of these distributed power generation sources, energy storage technologies will be indispensable. Among these technologies, battery energy storage technology is considered to be most viable. Sumitomo Electric Industries, Ltd. has developed a redox flow battery system suitable for large scale energy storage, and carried out several demonstration projects on the stabilization of renewable energy output using the redox flow battery system. This paper describes the advantages of the redox flow battery and reviews the demonstration projects. 展开更多
关键词 redox flow battery energy storage renewable energy smart grid wind turbine photovoltaics
在线阅读 下载PDF
上一页 1 2 44 下一页 到第
使用帮助 返回顶部