期刊文献+
共找到34篇文章
< 1 2 >
每页显示 20 50 100
一种基于注意力机制的BERT-CNN-GRU检测方法 被引量:1
1
作者 郑雅洲 刘万平 黄东 《计算机工程》 北大核心 2025年第1期258-268,共11页
针对现有检测方法对短域名检测性能普遍较差的问题,提出一种BERT-CNN-GRU结合注意力机制的检测方法。通过BERT提取域名的有效特征和字符间组成逻辑,根据并行的融合简化注意力的卷积神经网络(CNN)和基于多头注意力机制的门控循环单元(GRU... 针对现有检测方法对短域名检测性能普遍较差的问题,提出一种BERT-CNN-GRU结合注意力机制的检测方法。通过BERT提取域名的有效特征和字符间组成逻辑,根据并行的融合简化注意力的卷积神经网络(CNN)和基于多头注意力机制的门控循环单元(GRU)提取域名深度特征。CNN使用n-gram排布的方式提取不同层次的域名信息,并采用批标准化(BN)对卷积结果进行优化。GRU能够更好地获取前后域名的组成差异,多头注意力机制在捕获域名内部的组成关系方面表现出色。将并行检测网络输出的结果进行拼接,最大限度地发挥两种网络的优势,并采用局部损失函数聚焦域名分类问题,提高分类性能。实验结果表明,该方法在二分类上达到了最优效果,在短域名多分类数据集上15分类的加权F1值达到了86.21%,比BiLSTM-Seq-Attention模型提高了0.88百分点,在UMUDGA数据集上50分类的加权F1值达到了85.51%,比BiLSTM-Seq-Attention模型提高了0.45百分点。此外,该模型对变体域名和单词域名生成算法(DGA)检测性能较好,具有处理域名数据分布不平衡的能力和更广泛的检测能力。 展开更多
关键词 恶意短域名 BERT预训练 批标准化 注意力机制 门控循环单元 并行卷积神经网络
在线阅读 下载PDF
基于脉冲神经元膜电位增量的数据分布统计量及批归一化
2
作者 李炜奇 陈云华 +1 位作者 陈平华 朱春佳 《计算机应用研究》 北大核心 2025年第8期2341-2347,共7页
脉冲神经网络(SNN)因其具有更好的生物解释性、强大的时空信息表征能力,以及超低功耗和延迟特性而受到广泛关注。然而SNN在训练算法、超参数设置、架构设计研究等方面还存在不少挑战性的问题。针对现有SNN归一化(BN)方法无法有效处理时... 脉冲神经网络(SNN)因其具有更好的生物解释性、强大的时空信息表征能力,以及超低功耗和延迟特性而受到广泛关注。然而SNN在训练算法、超参数设置、架构设计研究等方面还存在不少挑战性的问题。针对现有SNN归一化(BN)方法无法有效处理时间依赖性的问题,通过分析膜电位增量在时间步上的传播,提出按时间步逐步计算膜电位增量的时空积累量;以此为数据分布的统计量分别对各个时间步数据进行归一化,并提出按照指数移动平均计算膜电位增量的时空积累量,形成一种带衰减因子的时空累积批归一化(spatio-temporal attenuation cumulative batch normalization,STBN)方法。在CIFAR-10和CIFAR-100及CIFAR10-DVS数据集上的实验结果表明,所提方法能显著提升网络分类精度并降低时延。特别是在CIFAR-100数据集上仅使用两个时间步就获得了76.30%的精度,相比同类模型的先前最优算法精度提升了3.43%。 展开更多
关键词 脉冲神经网络 批归一化 脉冲时间依赖性 脉冲神经网络训练算法
在线阅读 下载PDF
基于VGG19-SK模型的机械密封启停状态识别
3
作者 刘伟 翟志兴 +1 位作者 张书尧 李双喜 《机电工程》 北大核心 2025年第1期23-32,50,共11页
机械密封在机械设备的的启停过程中,时常会发生失效。针对这一问题,提出了一种新的深度学习模型VGG19-SK,并将其应用于机械密封的启停状态识别中。首先,在机械密封启停过程中,利用密封声发射信号试验台获取了试验数据,这些数据为训练深... 机械密封在机械设备的的启停过程中,时常会发生失效。针对这一问题,提出了一种新的深度学习模型VGG19-SK,并将其应用于机械密封的启停状态识别中。首先,在机械密封启停过程中,利用密封声发射信号试验台获取了试验数据,这些数据为训练深度学习模型提供了基础;然后,在传统VGG19基础之上进行了改进,增加了SK卷积层、全局平均池化层和批归一化(BN)层,这些改进显著减少了模型的参数数量,降低了对硬件设备的要求,同时提升了模型的性能;最后,在模型训练过程中,对VGG19-SK模型进行了细致的调优,采用准确率曲线、损失值曲线以及混淆矩阵等指标,与其他模型进行了对比,验证了VGG19-SK模型的有效性,突出了VGG19-SK模型的优越性。研究结果表明:在机械密封启停阶段8种分类识别中,VGG19-SK取得了86.67%的准确率,比传统VGG19提升了约2.19%;同时,模型的训练参数减少了83.74%,模型总体大小缩减了约80%。该VGG19-SK机械密封状态识别模型在兼顾准确率的同时,保证了硬件资源受限状况下的运行能力,为进一步开发基于深度神经网络模型的机械密封状态故障诊断系统奠定了基础。 展开更多
关键词 机械密封 深度学习模型 声发射信号 SK卷积层 全局平均池化层 批归一化层 VGG19-SK模型
在线阅读 下载PDF
基于BN-DBN的网络安全态势要素获取机制 被引量:3
4
作者 朱江 王婷婷 《计算机应用》 CSCD 北大核心 2019年第A01期100-104,共5页
为了提高深度信念网络(DBN)的收敛速度以及提高小样本条件下的态势要素的获取精度,提出一种基于批量归一化(BN)的DBN安全态势要素获取机制。一方面在DBN中加入BN以解决梯度消失问题并稳定网络训练;另一方面在DBN输出层提出一种改进的主... 为了提高深度信念网络(DBN)的收敛速度以及提高小样本条件下的态势要素的获取精度,提出一种基于批量归一化(BN)的DBN安全态势要素获取机制。一方面在DBN中加入BN以解决梯度消失问题并稳定网络训练;另一方面在DBN输出层提出一种改进的主动学习(IAL)算法反向微调DBN,在每次迭代中主动选择训练样本来平衡样本种类。理论分析和实验数据仿真结果表明该机制能够解决DBN收敛速度过慢、梯度消失以及小类样本分类不准确问题,同时在获取精度、收敛速度以及算法复杂度上优于未改进的DBN态势要素获取机制。 展开更多
关键词 态势要素 深度信念网络 批量归一化 主动学习
在线阅读 下载PDF
BN对VGG神经网络的影响研究 被引量:13
5
作者 陈强普 桑军 +3 位作者 项志立 罗红玲 郭沛 蔡斌 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2018年第1期35-39,共5页
文章针对在训练目前卷积神经网络中较为主流的深度神经网络VGG网络模型时调参艰难、收敛较慢的问题,引入批归一化(batch normalization,BN)进行改进。批归一化能提高网络训练的初始学习率上限,同时加快模型收敛速度。相关实验结果表明,... 文章针对在训练目前卷积神经网络中较为主流的深度神经网络VGG网络模型时调参艰难、收敛较慢的问题,引入批归一化(batch normalization,BN)进行改进。批归一化能提高网络训练的初始学习率上限,同时加快模型收敛速度。相关实验结果表明,在端对端训练或者微调神经网络过程中应用批归一化,能较好地达到优化目的,同时指出在VGG网络中所有激活层前进行批归一化能得到最好的效果。另外VGG网络的优化方法会影响到批归一化,使用改进的基于动量的随机梯度下降能使网络训练时的波动更小。 展开更多
关键词 批归一化(bn) VGG网络 端对端训练 神经网络微调
在线阅读 下载PDF
基于IndRNN与BN的深层图像描述模型 被引量:1
6
作者 曹渝昆 魏健强 +1 位作者 孙涛 徐越 《计算机工程》 CAS CSCD 北大核心 2021年第10期194-200,共7页
现有图像描述模型存在解码端层次不深、训练效率低下的问题,且生成的描述语句在语言连贯性和内容多样性方面效果欠佳,为此,提出一种基于独立循环神经网络的深层图像描述模型Deep-NIC。采用独立循环神经元与批标准化方法构建解码单元,通... 现有图像描述模型存在解码端层次不深、训练效率低下的问题,且生成的描述语句在语言连贯性和内容多样性方面效果欠佳,为此,提出一种基于独立循环神经网络的深层图像描述模型Deep-NIC。采用独立循环神经元与批标准化方法构建解码单元,通过解码单元的多层叠加建立深层解码端。使用谷歌inception V3作为编码端,构建深层图像描述模型。在数据集MS COCO2014上进行对比实验,结果表明,与基线模型相比,Deep-NIC模型的BLEU-4、METEOR、CIDER评分分别提升3.2%、10.3%、8.18%,其更容易训练且具有更好的拟合效果。 展开更多
关键词 图像描述 深层图像描述模型 深层解码端 独立循环神经网络 批标准化
在线阅读 下载PDF
融合Inception V1-CBAM-CNN的轴承剩余寿命预测模型 被引量:7
7
作者 余江鸿 彭雄露 +2 位作者 刘涛 杨文 叶帅 《机电工程》 北大核心 2024年第1期107-114,共8页
针对现有的滚动轴承剩余寿命(RUL)预测方法精度低、轴承健康指标(HI)构建困难等问题,提出了一种基于卷积神经网络(CNN)并融合Inception V1模块和卷积注意力机制模块(CBAM)的滚动轴承RUL预测模型。首先,在CNN中添加了CBAM机制,并进行了... 针对现有的滚动轴承剩余寿命(RUL)预测方法精度低、轴承健康指标(HI)构建困难等问题,提出了一种基于卷积神经网络(CNN)并融合Inception V1模块和卷积注意力机制模块(CBAM)的滚动轴承RUL预测模型。首先,在CNN中添加了CBAM机制,并进行了加权处理,在通道和空间维度对重要特征进行了强化,对次要特征进行了抑制,通过添加改进的InceptionV1模块,提高了CNN通道间信息交互水平,全面提取了退化特征;然后,进行了网络优化,采用全局最大池化(GMP)方法对模型进行了简化,采用Dropout和批量归一化(BN)方法,避免了过拟合,提高了精度,且克服了训练时出现的梯度消失问题;最后,对数据进行了处理,将降噪后的信号重组为三维张量,将其作为HI,构建了退化标签,引入了评价指标,采用PHM2012轴承数据集进行了实验验证,在3种工况下将其与深度神经网络(DNN)、CNN方法、结合注意力机制的残差网络方法(ResNet)进行了对比。研究结果表明:该方法在变负载条件下的平均RMSE为0.033,较其他方法的RMSE值分别降低了86%、78%和69%,在预测精度和泛化能力方面具有明显优势。 展开更多
关键词 滚动轴承 剩余使用寿命 Inception V1模块 卷积注意力机制模块 卷积神经网络 全局最大池化 批量归一化
在线阅读 下载PDF
深度学习批归一化及其相关算法研究进展 被引量:82
8
作者 刘建伟 赵会丹 +1 位作者 罗雄麟 许鋆 《自动化学报》 EI CSCD 北大核心 2020年第6期1090-1120,共31页
深度学习已经广泛应用到各个领域,如计算机视觉和自然语言处理等,并都取得了明显优于早期机器学习算法的效果.在信息技术飞速发展的今天,训练数据逐渐趋于大数据集,深度神经网络不断趋于大型化,导致训练越来越困难,速度和精度都有待提升... 深度学习已经广泛应用到各个领域,如计算机视觉和自然语言处理等,并都取得了明显优于早期机器学习算法的效果.在信息技术飞速发展的今天,训练数据逐渐趋于大数据集,深度神经网络不断趋于大型化,导致训练越来越困难,速度和精度都有待提升.2013年,Ioffe等指出训练深度神经网络过程中存在一个严重问题:中间协变量迁移(Internal covariate shift),使网络训练过程对参数初值敏感、收敛速度变慢,并提出了批归一化(Batch normalization,BN)方法,以减少中间协变量迁移问题,加快神经网络训练过程收敛速度.目前很多网络都将BN作为一种加速网络训练的重要手段,鉴于BN的应用价值,本文系统综述了BN及其相关算法的研究进展.首先对BN的原理进行了详细分析.BN虽然简单实用,但也存在一些问题,如依赖于小批量数据集的大小、训练和推理过程对数据处理方式不同等,于是很多学者相继提出了BN的各种相关结构与算法,本文对这些结构和算法的原理、优势和可以解决的主要问题进行了分析与归纳.然后对BN在各个神经网络领域的应用方法进行了概括总结,并且对其他常用于提升神经网络训练性能的手段进行了归纳.最后进行了总结,并对BN的未来研究方向进行了展望. 展开更多
关键词 批归一化 白化 中间协变量迁移 随机梯度下降 归一化传播 批量重归一化 逐步归纳批量归一化 层归一化
在线阅读 下载PDF
基于双向LSTM的维吾尔语事件因果关系抽取 被引量:18
9
作者 田生伟 周兴发 +3 位作者 禹龙 冯冠军 艾山.吾买尔 李圃 《电子与信息学报》 EI CSCD 北大核心 2018年第1期200-208,共9页
针对传统方法不能有效抽取维吾尔语事件因果关系的问题,该文提出一种基于双向LSTM(Bidirectional Long Short-Term Memory,Bi LSTM)的维吾尔语事件因果关系抽取方法。通过对维吾尔语语言以及事件因果关系特点的研究,提取出10项基于事件... 针对传统方法不能有效抽取维吾尔语事件因果关系的问题,该文提出一种基于双向LSTM(Bidirectional Long Short-Term Memory,Bi LSTM)的维吾尔语事件因果关系抽取方法。通过对维吾尔语语言以及事件因果关系特点的研究,提取出10项基于事件内部结构信息的特征;同时为充分利用事件语义信息,引入词嵌入作为Bi LSTM的输入,提取事件句隐含的深层语义特征并利用批样规范化(Batch Normalization,BN)算法加速Bi LSTM的收敛;最后融合这两类特征作为softmax分类器的输入进而完成维吾尔语事件因果关系抽取。实验结果表明,该方法用于维吾尔语事件因果关系的抽取准确率为89.19%,召回率为83.19%,F值为86.09%,证明了该文提出的方法在维吾尔语事件因果关系抽取上的有效性。 展开更多
关键词 语言信号处理 事件因果关系 维吾尔语 双向LSTM 词嵌入 批样规范化
在线阅读 下载PDF
基于生成对抗网络的模糊密钥加密通信研究 被引量:16
10
作者 李西明 吴嘉润 +2 位作者 吴少乾 郭玉彬 马莎 《计算机应用研究》 CSCD 北大核心 2020年第6期1779-1781,1793,共4页
解决模糊密钥加密通信问题,并利用生成对抗网络的方法初步实现对称密钥下的模糊密钥加密通信方案。首先利用神经网络实现两方模糊密钥加密通信,实现16 bit密钥对称加密通信中6 bit密钥差异的模糊密钥加密通信。在此基础上考虑敌手存在... 解决模糊密钥加密通信问题,并利用生成对抗网络的方法初步实现对称密钥下的模糊密钥加密通信方案。首先利用神经网络实现两方模糊密钥加密通信,实现16 bit密钥对称加密通信中6 bit密钥差异的模糊密钥加密通信。在此基础上考虑敌手存在的模糊密钥加密通信模型,利用GAN思想对通信双方与敌手进行对抗训练,实现16 bit密钥对称加密通信中4 bit密钥差异的模糊密钥通信,实验所得模型中通信双方可正常通信而敌手在可获取密文情况下无法获取明文信息。实验证明了利用神经网络与生成对抗网络解决模糊密钥加密通信问题的可行性。 展开更多
关键词 生成对抗网络 模糊密钥加密 批规格化 全连接神经网络 卷积神经网络
在线阅读 下载PDF
基于中心损失-改进卷积自编码器的滚动轴承半监督故障诊断 被引量:8
11
作者 齐咏生 巩育瑞 +2 位作者 高胜利 刘利强 李永亭 《振动与冲击》 EI CSCD 北大核心 2023年第7期301-311,共11页
当前基于深度学习的旋转机械故障诊断技术,凭借其强大的逐层加工和内置特征变换功能受到广泛关注,然而传统用于故障诊断的深度网络需要大量标签数据,且诊断结果依赖于标签的数量和准确性。为此,提出一种基于中心损失-改进卷积自编码器(c... 当前基于深度学习的旋转机械故障诊断技术,凭借其强大的逐层加工和内置特征变换功能受到广泛关注,然而传统用于故障诊断的深度网络需要大量标签数据,且诊断结果依赖于标签的数量和准确性。为此,提出一种基于中心损失-改进卷积自编码器(center loss-improved convolutional auto-encoder, CL-ICAE)的半监督故障诊断方法。该方法首先利用连续小波变换将故障信号转换为时频图,细化故障特征表征;之后构建改进的卷积自编码器网络结构,并引入批量归一化(batch normalization, BN)和Dropout,在特征提取阶段防止过拟合;之后在分类阶段,通过将中心损失(center loss)引入Softmax损失函数,构建联合损失函数,使故障特征实现类内距离更小,特征差异更大,进一步提高分类精度。最后,将所提方法通过凯斯西储大学轴承数据集和轴承故障试验平台进行验证,结果表明在少量标签样本情况下,均可实现有效的故障诊断,提升诊断准确率。 展开更多
关键词 滚动轴承 卷积自编码器 半监督 批量归一化(bn) 中心损失(CL)
在线阅读 下载PDF
基于优化卷积神经网络结构的交通标志识别 被引量:19
12
作者 王晓斌 黄金杰 刘文举 《计算机应用》 CSCD 北大核心 2017年第2期530-534,共5页
现有算法对交通标志进行识别时,存在训练时间短但识别率低,或识别率高但训练时间长的问题。为此,综合批量归一化(BN)方法、逐层贪婪预训练(GLP)方法,以及把分类器换成支持向量机(SVM)这三种方法对卷积神经网络(CNN)结构进行优化,提出基... 现有算法对交通标志进行识别时,存在训练时间短但识别率低,或识别率高但训练时间长的问题。为此,综合批量归一化(BN)方法、逐层贪婪预训练(GLP)方法,以及把分类器换成支持向量机(SVM)这三种方法对卷积神经网络(CNN)结构进行优化,提出基于优化CNN结构的交通标志识别算法。其中:BN方法可以用来改变中间层的数据分布情况,把卷积层输出数据归一化为均值为0、方差为1,从而提高训练收敛速度,减少训练时间;GLP方法则是先训练第一层卷积网络,训练完把参数保留,继续训练第二层,保留参数,直到把所有卷积层训练完毕,这样可以有效提高卷积网络识别率;SVM分类器只专注于那些分类错误的样本,对已经分类正确的样本不再处理,从而提高了训练速度。使用德国交通标志识别数据库进行训练和识别,新算法的训练时间相对于传统CNN训练时间减少了20.67%,其识别率达到了98.24%。所提算法通过对传统CNN结构进行优化,极大地缩短了训练时间,并具有较高的识别率。 展开更多
关键词 卷积神经网络 批量归一化 贪婪预训练 支持向量机
在线阅读 下载PDF
基于时空图卷积网络的交通事故风险预测研究 被引量:4
13
作者 王庆荣 魏怡萌 +1 位作者 朱昌锋 田可可 《计算机工程》 CAS CSCD 北大核心 2022年第11期22-29,共8页
交通事故的预测是通过对过去路段发生的交通事故进行分析,在综合考虑影响交通事故的相关因素后,对未来路段的交通事故发生状态进行预测。以往的大多数研究通常采用传统机器学习方法或单一深度学习模型预测法,利用网格化确定预测空间的单... 交通事故的预测是通过对过去路段发生的交通事故进行分析,在综合考虑影响交通事故的相关因素后,对未来路段的交通事故发生状态进行预测。以往的大多数研究通常采用传统机器学习方法或单一深度学习模型预测法,利用网格化确定预测空间的单位,忽略了影响交通事故的天气、路况等外部因素,导致模型的预测性能不佳。提出一种基于时空特性的城市交通事故风险预测模型,在模型中使用改进的时空图卷积网络,利用图卷积网络(GCN)提取空间相关特征,并加入批标准化层解决梯度消失爆炸问题。在时间维度上采用门控线性单元(GLU)实现一维卷积操作,提取时间相关特征,并将GCN和GLU组合成时空卷积模块提取时空相关特征,使用均方误差损失函数解决样本数据零膨胀问题。实验结果表明,与GLU、SDCAE和ConvLSTM模型相比,该模型的RMSE指标分别降低了28%、4.87%、4.19%,能有效捕获时空相关性,综合性能得到较大提升。 展开更多
关键词 深度学习 城市交通事故 时空图卷积网络 时空相关性 批标准化层
在线阅读 下载PDF
融合双流三维卷积和注意力机制的动态手势识别 被引量:26
14
作者 王粉花 张强 +1 位作者 黄超 张苒 《电子与信息学报》 EI CSCD 北大核心 2021年第5期1389-1396,共8页
得益于计算机硬件以及计算能力的进步,自然、简单的动态手势识别在人机交互方面备受关注。针对人机交互中对动态手势识别准确率的要求,该文提出一种融合双流3维卷积神经网络(I3D)和注意力机制(CBAM)的动态手势识别方法CBAM-I3D。并且改... 得益于计算机硬件以及计算能力的进步,自然、简单的动态手势识别在人机交互方面备受关注。针对人机交互中对动态手势识别准确率的要求,该文提出一种融合双流3维卷积神经网络(I3D)和注意力机制(CBAM)的动态手势识别方法CBAM-I3D。并且改进了I3D网络模型的相关参数和结构,为了提高模型的收敛速度和稳定性,使用了批量归一化(BN)技术优化网络,使优化后网络的训练时间缩短。同时与多种双流3D卷积方法在开源中国手语数据集(CSL)上进行了实验对比,实验结果表明,该文所提方法能很好地识别动态手势,识别率达到了90.76%,高于其他动态手势识别方法,验证了所提方法的有效性和可行性。 展开更多
关键词 动态手势识别 深度学习 双流3维卷积神经网络 注意力机制 bn
在线阅读 下载PDF
卷积神经网络训练访存优化 被引量:3
15
作者 王吉军 郝子宇 李宏亮 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2020年第2期98-107,共10页
虽然批归一化算法能有效加速深度卷积网络模型的收敛速度,但其数据依赖性复杂,训练时会导致严重的“存储墙”瓶颈。故对使用批归一化算法的卷积神经网络,提出多层融合且重构批归一化层的训练方法,减少模型训练过程中的访存量。首先,通... 虽然批归一化算法能有效加速深度卷积网络模型的收敛速度,但其数据依赖性复杂,训练时会导致严重的“存储墙”瓶颈。故对使用批归一化算法的卷积神经网络,提出多层融合且重构批归一化层的训练方法,减少模型训练过程中的访存量。首先,通过分析训练时批归一化层的数据依赖、访存特征及模型训练时的访存特征,分析访存瓶颈的关键因素;其次,使用“计算换访存”思想,提出融合“卷积层+批归一化层+激活层”结构的方法,并基于批归一化层的计算访存特征,将其重构为两个子层,分别与相邻层融合,进一步减少训练时对主存的读写,并构建了训练时的访存量模型与计算量模型。实验结果表明,使用NVIDIA TESLA V100 GPU训练ResNet-50、Inception V3及DenseNet模型时,同原始训练方法相比,其访存数据量分别降低了33%,22%及31%,V100的实际计算效率分别提升了20.5%,18.5%以及18.1%。这种优化方法利用了网络结构与模型训练时的访存特点,可与其他访存优化方法协同使用,进一步降低模型训练时的访存量。 展开更多
关键词 深度卷积神经网络 模型训练 多层融合 批归一化重构 访存优化
在线阅读 下载PDF
基于深度卷积神经网络的图像超分辨率重建方法 被引量:9
16
作者 谢超 朱泓宇 《传感器与微系统》 CSCD 2020年第9期142-145,共4页
为了更好地对图像进行分辨率增强,提出了一种基于卷积神经网络的图像超分辨率算法。该方法在将输入图像进行归一化后,主要通过残差学习、取消批规范化结构的方式构建深层神经网络,并进行训练。通过主客观对比实验验证了该设计的图像超... 为了更好地对图像进行分辨率增强,提出了一种基于卷积神经网络的图像超分辨率算法。该方法在将输入图像进行归一化后,主要通过残差学习、取消批规范化结构的方式构建深层神经网络,并进行训练。通过主客观对比实验验证了该设计的图像超分辨率增强方法的有效性,以及相较于其他传统同类方法的优越性。 展开更多
关键词 超分辨率重建 卷积神经网络 残差学习 批规范化
在线阅读 下载PDF
基于卫星云图和改进AlexNet的沙尘暴预测方法 被引量:5
17
作者 仁庆道尔吉 程坤 郑碧莹 《计算机应用》 CSCD 北大核心 2022年第S02期310-314,共5页
针对沙尘暴预测多依赖于地面气象资料,且与深度学习算法结合较少的问题,提出一种基于卫星云图和改进AlexNet的沙尘暴预测算法。首先,参照国标为地面气象资料构造沙尘暴等级标签;然后,对卫星云图进行透视变换、气象站云图数量再平衡等处... 针对沙尘暴预测多依赖于地面气象资料,且与深度学习算法结合较少的问题,提出一种基于卫星云图和改进AlexNet的沙尘暴预测算法。首先,参照国标为地面气象资料构造沙尘暴等级标签;然后,对卫星云图进行透视变换、气象站云图数量再平衡等处理,并将卫星云图与沙尘暴等级标签相互标定;其次,改变AlexNet的卷积核尺寸,去掉局部响应归一化(LRN)层,并在所有卷积层和激活层之间增加批归一化(BN)层;最后,使用改进后的AlexNet模型进行训练、测试。实验结果表明,改进后的AlexNet模型在精确率、召回率、F1值和准确率上均优于VGGNet16、VGGNet19及AlexNet。结果表明所提方法是有效的,能为地面气象资料、卫星云图与深度学习相结合来预测沙尘暴提供参考。 展开更多
关键词 沙尘暴预测 卷积神经网络 卫星云图 透视变换 批归一化
在线阅读 下载PDF
基于联合条纹关系的车辆重识别
18
作者 张廷萍 帅聪 +3 位作者 杨建喜 邹俊志 郁超顺 杜利芳 《计算机应用》 CSCD 北大核心 2022年第6期1884-1891,共8页
为了解决车辆重识别过程中因车辆特征图分块所导致的空间信息丢失问题,提出一种联合条纹特征之间关系的模块以弥补丢失的空间信息。首先,针对车辆特殊的物理结构,构建了一种双分支神经网络模型,对输出的特征图进行水平和垂直均等分割并... 为了解决车辆重识别过程中因车辆特征图分块所导致的空间信息丢失问题,提出一种联合条纹特征之间关系的模块以弥补丢失的空间信息。首先,针对车辆特殊的物理结构,构建了一种双分支神经网络模型,对输出的特征图进行水平和垂直均等分割并在不同的神经网络分支上进行训练;然后,设计多激活值模块以减少噪声并丰富特征图信息;接着,使用三元组和交叉熵损失函数对不同的特征进行监督训练以约束类内距离并扩大类间距离;最后,设计批量归一化(BN)模块消除不同损失函数在优化方向上存在的差异,从而加速模型的收敛。使用所提方法在VeRi-776和VehicleID两个公共数据集上进行实验,结果表明该方法的Rank1值优于现有最好的方法VehicleNet,验证了其有效性。 展开更多
关键词 车辆重识别 条纹关系 特征图分块 多激活值 批量归一化
在线阅读 下载PDF
结合图像增强和卷积神经网络的小麦不完善粒识别 被引量:12
19
作者 贺杰安 吴晓红 +2 位作者 何小海 胡建蓉 卿粼波 《计算机应用》 CSCD 北大核心 2021年第3期911-916,共6页
针对实际应用场景下,小麦籽粒图像背景单一以及小麦不完善粒的不完善特征大多是局部特征而大部分图像特征与正常粒无异的特点,提出一种基于细节的图像增强(IE)的小麦不完善粒识别方法。首先,使用交替最小化算法约束原图在水平方向和竖... 针对实际应用场景下,小麦籽粒图像背景单一以及小麦不完善粒的不完善特征大多是局部特征而大部分图像特征与正常粒无异的特点,提出一种基于细节的图像增强(IE)的小麦不完善粒识别方法。首先,使用交替最小化算法约束原图在水平方向和竖直方向的L0范数来平滑原图作为基础图层,并用原图减去基础图层得到图像的细节层;然后,突出细节层后将其与基础图层叠加以增强图像;最后,将增强后的图像作为卷积神经网络(CNN)的输入,使用加入了批正则化(BN)层的CNN对图像进行识别。分别以经典分类网络LeNet-5、ResNet-34、VGG-16和在其中添加BN层的这些网络作为分类网络,增强前后的图像作为输入来进行分类实验,并以测试集准确率评估性能。实验结果表明,三个经典分类网络均在添加了BN层后而使用相同输入时的测试集准确率提高了5个百分点,在使用细节增强后的图像作为输入时三个网络的测试集准确率提高了1个百分点,以上二者联合使用时三个网络均获得超过7个百分点的测试集准确率提升。 展开更多
关键词 小麦不完善粒识别 卷积神经网络 L0平滑 图像增强 批正则化 分类
在线阅读 下载PDF
基于改进YOLO算法的多目标铁谱磨粒智能识别 被引量:7
20
作者 张子杨 魏海军 +1 位作者 刘竑 贾风光 《润滑与密封》 CAS CSCD 北大核心 2021年第5期27-33,共7页
为提高铁谱磨粒中相似磨粒的识别率,降低小颗粒磨粒的漏检率,并确保检测速度的实时性,基于YOLO算法,提出了大尺度yolo层检测(yolov3mod)和全尺度yolo层检测(yolov35l)两种改进模型。该改进模型通过添加空间金字塔池化模块、拓展yolo层尺... 为提高铁谱磨粒中相似磨粒的识别率,降低小颗粒磨粒的漏检率,并确保检测速度的实时性,基于YOLO算法,提出了大尺度yolo层检测(yolov3mod)和全尺度yolo层检测(yolov35l)两种改进模型。该改进模型通过添加空间金字塔池化模块、拓展yolo层尺度,来改善网络结构,提高了相似磨粒的识别率,降低了小颗粒磨粒的漏检率;通过融合卷积层与批量归一化(BN)层,减少了模型计算量,提高了模型检测速度。实验结果表明:与原始模型相比,yolov3mod模型对相似磨粒的识别率提高了8%,总平均准确率提高了5%,yolov35l模型对相似磨粒的识别率提高了14%,总平均准确率提高了10%;2种改进模型的推理速度相比原始模型提高了8%,且磨粒的定位更加精确,基本实现了复杂背景下多目标磨粒的识别;yolov3mod拥有较快的检测速度,yolov35l则有着更高的检测精度,可根据实际工况需求进行取舍。 展开更多
关键词 铁谱磨粒 空间金字塔池化模块 卷积层 批量归一化层
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部