The rock mass in nature is in most cases anisotropic,while the existing classifications are mostly developed with the assumption of isotropic conditions that not always meet the engineering requirements.In this study,...The rock mass in nature is in most cases anisotropic,while the existing classifications are mostly developed with the assumption of isotropic conditions that not always meet the engineering requirements.In this study,an anisotropic system based on China National Standard of BQ,named as A-BQ,is developed to address the classification of anisotropic rock mass incorporating the anisotropy degree as well as the quality of rock mass.Two series of basic rating factors are incorporated including inherent anisotropy and structure anisotropy.The anisotropy degree of rock mass is characterized by the ratio of maximum to minimum quality score and adjusted by the confining stress.The quality score of rock mass is determined by the key factors of anisotropic structure occurrence and the correction factors of stress state and groundwater condition.The quality of rock mass is characterized by a quality score and classified in five grades.The assessment of stability status and probable failure modes are also suggested for tunnel and slope engineering for different quality grades.Finally,two cases of tunnel and slope are presented to illustrate the application of the developed classification system into the rock masses under varied stress state.展开更多
The Panxi Rift Zone is a famous metallogenic province in Southwest China. Continental rifting developed in Hercynian period (P 2, 260~250Ma) accompany with a series of basic\|ultrabasic rocks. Various in lithologies,...The Panxi Rift Zone is a famous metallogenic province in Southwest China. Continental rifting developed in Hercynian period (P 2, 260~250Ma) accompany with a series of basic\|ultrabasic rocks. Various in lithologies, such as layered intrusions (V\|Ti\|Fe formation), small\|sized mafic\|ultramafic bodies (stocks) and large\|scale basalt (Emeishan Basalt) are constituted of a complete melanocratic rock system.Most of Cu\|Ni\|PGE sulfide deposits are related to small\|sized ultramafic rock bodies. It is a perfect possibility for them to be an affinity of basic eruptive lava and for the neck facies. But in ① Panzhihua\|Center Yunnan Province, the Gaojiacun, also Jinbaoshan, as large stratiform basic\|ultrabasic complex used to be thought that is older one intruded to basement rocks in Precambrian. However, new evidences suggest it is similar with the small\|sized ultramafic rock bodies containing Cu\|Ni\|PGE, and also the both are affinity of the Emeishan Basalt; ② Miyi district, Cu\|Pt mineralization was discovered in the Xinjie bedded basic complex, and in where ophitic olivine\|pyroxenite\|peridotite facies are exactly Pt\|bearing layers; ③ Longzhoushan district, we have recently researched basic\|ultrabasic clusters which intruded into fracture zones, and Cu\|Ni\|Pt, Pd mineralization developed at the salbands.Generally, the basalt is poor in PGE and rich in Cu. It is suggested as the result of PGE dispersion\|concentration processing in the melanocratic rock system when rifting happened.展开更多
基金Projects(41702345,41825018)supported by the National Natural Science Foundation of ChinaProject(2019QZKK0904)supported by the Second Tibetan Plateau Scientific Expedition and Research Program(STEP),ChinaProject(KFZD-SW-422)supported by the Key Deployment Program of the Chinese Academy of Sciences。
文摘The rock mass in nature is in most cases anisotropic,while the existing classifications are mostly developed with the assumption of isotropic conditions that not always meet the engineering requirements.In this study,an anisotropic system based on China National Standard of BQ,named as A-BQ,is developed to address the classification of anisotropic rock mass incorporating the anisotropy degree as well as the quality of rock mass.Two series of basic rating factors are incorporated including inherent anisotropy and structure anisotropy.The anisotropy degree of rock mass is characterized by the ratio of maximum to minimum quality score and adjusted by the confining stress.The quality score of rock mass is determined by the key factors of anisotropic structure occurrence and the correction factors of stress state and groundwater condition.The quality of rock mass is characterized by a quality score and classified in five grades.The assessment of stability status and probable failure modes are also suggested for tunnel and slope engineering for different quality grades.Finally,two cases of tunnel and slope are presented to illustrate the application of the developed classification system into the rock masses under varied stress state.
文摘The Panxi Rift Zone is a famous metallogenic province in Southwest China. Continental rifting developed in Hercynian period (P 2, 260~250Ma) accompany with a series of basic\|ultrabasic rocks. Various in lithologies, such as layered intrusions (V\|Ti\|Fe formation), small\|sized mafic\|ultramafic bodies (stocks) and large\|scale basalt (Emeishan Basalt) are constituted of a complete melanocratic rock system.Most of Cu\|Ni\|PGE sulfide deposits are related to small\|sized ultramafic rock bodies. It is a perfect possibility for them to be an affinity of basic eruptive lava and for the neck facies. But in ① Panzhihua\|Center Yunnan Province, the Gaojiacun, also Jinbaoshan, as large stratiform basic\|ultrabasic complex used to be thought that is older one intruded to basement rocks in Precambrian. However, new evidences suggest it is similar with the small\|sized ultramafic rock bodies containing Cu\|Ni\|PGE, and also the both are affinity of the Emeishan Basalt; ② Miyi district, Cu\|Pt mineralization was discovered in the Xinjie bedded basic complex, and in where ophitic olivine\|pyroxenite\|peridotite facies are exactly Pt\|bearing layers; ③ Longzhoushan district, we have recently researched basic\|ultrabasic clusters which intruded into fracture zones, and Cu\|Ni\|Pt, Pd mineralization developed at the salbands.Generally, the basalt is poor in PGE and rich in Cu. It is suggested as the result of PGE dispersion\|concentration processing in the melanocratic rock system when rifting happened.