In contrast to the traditional interpretation of shear bands in sand as a bifurcation problem in continuum mechanics,shear bands in sand are considered as high-strain phase(plastic phase) of sand and the materials out...In contrast to the traditional interpretation of shear bands in sand as a bifurcation problem in continuum mechanics,shear bands in sand are considered as high-strain phase(plastic phase) of sand and the materials outside the bands are still in low-strain phase(elastic phase),namely,the two phases of sand can coexist under certain condition.As a one-dimensional example,the results show that,for materials with strain-softening behavior,the two-phase solution is a stable branch of solutions,but the method to find two-phase solutions is very different from the one for bifurcation analysis.The theory of multi-phase equilibrium and the slow plastic flow model are applied to predict the formation and patterns of shear bands in sand specimens,discontinuity of deformation gradient and stress across interfaces between shear bands and other regions is considered,the continuity of displacements and traction across interfaces is imposed,and the Maxwell relation is satisfied.The governing equations are deduced.The critical stress for the formation of a shear band,both the stresses and strains inside the band and outside the band,and the inclination angle of the band can all be predicted.The predicted results are consistent with experimental measurements.展开更多
This paper investigates the jamming sensing performance of the simultaneous transmit and receive based cognitive anti-jamming(SCAJ) receiver impaired by phase noise in local oscillators(LO) over fading channels. First...This paper investigates the jamming sensing performance of the simultaneous transmit and receive based cognitive anti-jamming(SCAJ) receiver impaired by phase noise in local oscillators(LO) over fading channels. Firstly, energy detection(ED)based on the jamming to noise ratio(JNR) of the high frequency bands SCAJ receiver with phase noise under different channels is analyzed. Then, the probabilities of jamming detection and false alarm in closed-form for the SCAJ receiver are derived. Finally,the modified Bayesian Cramer-Rao bound(BCRB) of jamming sensing for the SCAJ receiver is presented. Simulation results show that the performance degradation of the SCAJ system due to phase noise is more severe than that due to the channel fading in the circumstances where the signal bandwidth(BW) is kept a constant. Moreover, the signal BW has an effect on the phase noise in LO, and the jamming detection probability of the wideband SCAJ receiver with lower phase noise outperforms that of the narrowband receiver using the same center frequency. Furthermore,an accurate phase noise estimation and compensation scheme can improve the jamming detection capability of the SCAJ receiver in high frequency bands and approach to the upper bound.展开更多
Objective Patients with repaired tetralogy of Fallot(rTOF)account for the majority of cases with late onset right ventricle(RV)failure.The current surgical approach,including pulmonary valve replacement/insertion(PVR)...Objective Patients with repaired tetralogy of Fallot(rTOF)account for the majority of cases with late onset right ventricle(RV)failure.The current surgical approach,including pulmonary valve replacement/insertion(PVR),has yielded mixed results with some patients recover RV function and some do not.An innovative surgical approach was proposed to help ventricle to contract and improve RV function qualified by ejection fraction with one or more active contracting bands.Computational biomechanical modelling is a widely used method in cardiovascular study for investigation of mechanisms governing disease development,quantitative diagnostic and treatment strategies and improving surgical designs for better outcome.Muscle active contraction caused by zero-load sarcomere shortening leads to change of zero-load configurations.In lieu of experimenting using real surgery on animal or human,computational simulations(virtual surgery)were performed to test different band combination and insertion options to identify optimal surgery design and band insertion plan.Methods Cardiac magnetic resonance(CMR)data were obtained from one rTOF patient(sex:male,age:22.5 y)before pulmonary valve replacement surgery.The patient was suffering from RV dilation and dysfunction with RV end-systole volume 254.49ml and end-diastole volume 406.91 mL.A total of 15 computational RV/LV/Patch/Band combination models based on(CMR)imaging were constructed to investigate the influence of different band insertion surgery plans.These models included 5 different band insertion models combined and 3 different band contraction ratio(10%,15%and 20%band zero-stress length reduction).These models included 5 different band insertion models:Model 1 with one band at anterior to the middle of papillary muscle;Model 2 with one band at posterior to the middle of papillary muscle;Model 3 with 2 bands which are the ones from Models 1&2 combined;Model 4 with a band at the base of the papillary muscle;Model 5 with 3 bands which is a combination of Models 3&4.A pre-shrink process was performed on in-vivo begin-filling and end-systole MRI data to obtain diastole and systole zero4oad ventricle geometries.An extra 5%-8%shrinkage was applied to obtain corresponding systole zero-load geometry reflecting myocardium sarcomere shortening.The zero-load band length in systole was 10%,15%and 20%shorter than that in diastole according to their corresponding contraction ratio.The nonlinear Mooney-Rivlin model was used to describe the ventricle material properties with their material parameter values adjusted to match measured data with CMR.The band material properties were in the same scale with healthy right ventricle.The RV/LV/Band model construction and solution procedures were the same as described.Results Model 5 with band contraction ratio of 20%has the ability to improve RV ejection fraction to 41.07%,which represented a 3.61%absolute improvement,or 9.6%relative improvement using pre-PVR ejection fraction as the baseline number.The ejection fractions for Models 1-4 with band contraction ratio of 20%were 39.28%,39.47%,38.87%and 40.34%respectively.Compared to models with band contraction ratio15%and 20%,models with band contraction ratio 10%has the least ability on RV ejection fraction improvement with ejection fraction 38.28%,38.00%,38.81%,38.50%and 39.36%corresponding to Models 1-5.Conclusions This pilot work demonstrated that the band insertion surgery may have great potential to improve post-PVR RV cardiac function for patients with repaired TOF.More band contraction ratio and inserted band number may lead to better post-surgery outcome.Further investigations using in-vitro animal experiments and final patient studies are warranted.展开更多
[Objective]This study aims to develop a thermodynamically consistent phase-field framework for modeling the initiation and evolution of discontinuous structures in geomaterials.[Methods]Our model introduces crack driv...[Objective]This study aims to develop a thermodynamically consistent phase-field framework for modeling the initiation and evolution of discontinuous structures in geomaterials.[Methods]Our model introduces crack driving forces derived from the volumetric-deviatoric strain decomposition strategy,incorporating distinct tension,compression,and shear degradation mechanisms.Inertia effects capture compaction-band formation driven by wave-like disturbances,grain crushing,and frictional rearrangement.A monolithic algorithm ensures numerical stability and rapid convergence.[Results]The framework reproduces tensile,shear,mixed tensile-shear,and compressive-shear failures using the Benzeggagh-Kenane criterion.Validation against benchmark simulations-including uniaxial compression of rock-like and triaxial compression of V-notched sandstone specimens-demonstrates accurate predictions of crack initiation stress,localization orientation,and energy dissipation.[Conclusions]The framework provides a unified and robust numerical tool for analyzing the spatiotemporal evolution of strain localization and fracture in geomaterials.[Significance]By linking microscale fracture dynamics with macroscale failure within a thermodynamically consistent scheme,this study advances predictive modeling of rock stability,slope failure,and subsurface energy systems,contributing to safer and more sustainable geotechnical practice.展开更多
Separated transmit and receive antennas are employed to improve transmit-receive isolation in conventional short-range radars, which greatly increases the antenna size and misaligns of the transmit/receive radiation p...Separated transmit and receive antennas are employed to improve transmit-receive isolation in conventional short-range radars, which greatly increases the antenna size and misaligns of the transmit/receive radiation patterns. In this paper,a dual circularly polarized(CP) monostatic simultaneous transmit and receive(MSTAR) antenna with enhanced isolation is proposed to alleviate the problem. The proposed antenna consists of one sequentially rotating array(SRA), two beamforming networks(BFN), and a combined decoupling structure. The SRA is shared by the transmit and receive to reduce the size of the antenna and to obtain a consistent transmit and receive pattern.The BFN achieve right-hand CP for transmit and left-hand CP for receive. By exploring the combined decoupling structure of uniplanar compact electromagnetic band gap(UC-EBG) and ringshaped defected ground structure(RS-DGS), good transmitreceive isolation is achieved. The proposed antenna prototype is fabricated and experimentally characterized. The simulated and measured results show good agreement. The demonstrate transmit/receive isolation is height than 33 dB, voltage standing wave ratio is lower than 2, axial ratio is lower than 3 dB, and consistent radiation for both transmit and receive is within4.25-4.35 GHz.展开更多
Camouflaged people are extremely expert in actively concealing themselves by effectively utilizing cover and the surrounding environment. Despite advancements in optical detection capabilities through imaging systems,...Camouflaged people are extremely expert in actively concealing themselves by effectively utilizing cover and the surrounding environment. Despite advancements in optical detection capabilities through imaging systems, including spectral, polarization, and infrared technologies, there is still a lack of effective real-time method for accurately detecting small-size and high-efficient camouflaged people in complex real-world scenes. Here, this study proposes a snapshot multispectral image-based camouflaged detection model, multispectral YOLO(MS-YOLO), which utilizes the SPD-Conv and Sim AM modules to effectively represent targets and suppress background interference by exploiting the spatial-spectral target information. Besides, the study constructs the first real-shot multispectral camouflaged people dataset(MSCPD), which encompasses diverse scenes, target scales, and attitudes. To minimize information redundancy, MS-YOLO selects an optimal subset of 12 bands with strong feature representation and minimal inter-band correlation as input. Through experiments on the MSCPD, MS-YOLO achieves a mean Average Precision of 94.31% and real-time detection at 65 frames per second, which confirms the effectiveness and efficiency of our method in detecting camouflaged people in various typical desert and forest scenes. Our approach offers valuable support to improve the perception capabilities of unmanned aerial vehicles in detecting enemy forces and rescuing personnel in battlefield.展开更多
The performance of the photodetector is significantly impacted by the inherent surface faults in GaAs nanowires(NWs).We combined three-dimensional(3D)gallium arsenide nanowires with zero-dimensional(0D)WS_(2) quantum ...The performance of the photodetector is significantly impacted by the inherent surface faults in GaAs nanowires(NWs).We combined three-dimensional(3D)gallium arsenide nanowires with zero-dimensional(0D)WS_(2) quantum dot(QDs)materials in a simple and convenient way to form a heterogeneous structure.Various performance enhancements have been realized through the formation of typeⅡenergy bands in heterostructures,opening up new research directions for the future development of photodetector devices.This work successfully fabricated a high-sensitivity photodetector based on WS_(2)QDs/GaAs NWs heterostructure.Under 660 nm laser excitation,the photodetector exhibits a responsivity of 368.07 A/W,a detectivity of 2.7×10^(12)Jones,an external quantum efficiency of 6.47×10^(2)%,a low-noise equivalent power of 2.27×10^(-17)W·Hz^(-1/2),a response time of 0.3 s,and a recovery time of 2.12 s.This study provides a new solution for the preparation of high-performance GaAs detectors and promotes the development of optoelectronic devices for GaAs NWs.展开更多
The problems associated with vibrations of viaducts and low-frequency structural noise radiation caused by train excitation continue to increase in importance.A new floating-slab track vibration isolator-non-obstructi...The problems associated with vibrations of viaducts and low-frequency structural noise radiation caused by train excitation continue to increase in importance.A new floating-slab track vibration isolator-non-obstructive particle damping-phononic crystal vibration isolator is proposed herein,which uses the particle damping vibration absorption technology and bandgap vibration control theory.The vibration reduction performance of the NOPD-PCVI was analyzed from the perspective of vibration control.The paper explores the structure-borne noise reduction performance of the NOPD-PCVIs installed on different bridge structures under varying service conditions encountered in practical engineering applications.The load transferred to the bridge is obtained from a coupled train-FST-bridge analytical model considering the different structural parameters of bridges.The vibration responses are obtained using the finite element method,while the structural noise radiation is simulated using the frequency-domain boundary element method.Using the particle swarm optimization algorithm,the parameters of the NOPD-PCVI are optimized so that its frequency bandgap matches the dominant bridge structural noise frequency range.The noise reduction performance of the NOPD-PCVIs is compared to the steel-spring isolation under different service conditions.展开更多
With a focus on an industrial multivariable system, two subsystems including the flow and the level outputs are analysed and controlled, which have applicability in both real and academic environments. In such a case,...With a focus on an industrial multivariable system, two subsystems including the flow and the level outputs are analysed and controlled, which have applicability in both real and academic environments. In such a case, at first, each subsystem is distinctively represented by its model, since the outcomes point out that the chosen models have the same behavior as corresponding ones. Then, the industrial multivariable system and its presentation are achieved in line with the integration of these subsystems, since the interaction between them can not actually be ignored. To analyze the interaction presented, the Gershgorin bands need to be acquired, where the results are used to modify the system parameters to appropriate values. Subsequently, in the view of modeling results, the control concept in two different techniques including sequential loop closing control(SLCC) scheme and diagonal dominance control(DDC) schemes is proposed to implement on the system through the Profibus network, as long as the OPC(OLE for process control) server is utilized to communicate between the control schemes presented and the multivariable system. The real test scenarios are carried out and the corresponding outcomes in their present forms are acquired. In the same way, the proposed control schemes results are compared with each other, where the real consequences verify the validity of them in the field of the presented industrial multivariable system control.展开更多
基金Project(2007CB714001) supported by the National Basic Research Program of China (973 Program)
文摘In contrast to the traditional interpretation of shear bands in sand as a bifurcation problem in continuum mechanics,shear bands in sand are considered as high-strain phase(plastic phase) of sand and the materials outside the bands are still in low-strain phase(elastic phase),namely,the two phases of sand can coexist under certain condition.As a one-dimensional example,the results show that,for materials with strain-softening behavior,the two-phase solution is a stable branch of solutions,but the method to find two-phase solutions is very different from the one for bifurcation analysis.The theory of multi-phase equilibrium and the slow plastic flow model are applied to predict the formation and patterns of shear bands in sand specimens,discontinuity of deformation gradient and stress across interfaces between shear bands and other regions is considered,the continuity of displacements and traction across interfaces is imposed,and the Maxwell relation is satisfied.The governing equations are deduced.The critical stress for the formation of a shear band,both the stresses and strains inside the band and outside the band,and the inclination angle of the band can all be predicted.The predicted results are consistent with experimental measurements.
基金supported by the Program of the Aeronautical Science Foundation of China(2013ZC15003)
文摘This paper investigates the jamming sensing performance of the simultaneous transmit and receive based cognitive anti-jamming(SCAJ) receiver impaired by phase noise in local oscillators(LO) over fading channels. Firstly, energy detection(ED)based on the jamming to noise ratio(JNR) of the high frequency bands SCAJ receiver with phase noise under different channels is analyzed. Then, the probabilities of jamming detection and false alarm in closed-form for the SCAJ receiver are derived. Finally,the modified Bayesian Cramer-Rao bound(BCRB) of jamming sensing for the SCAJ receiver is presented. Simulation results show that the performance degradation of the SCAJ system due to phase noise is more severe than that due to the channel fading in the circumstances where the signal bandwidth(BW) is kept a constant. Moreover, the signal BW has an effect on the phase noise in LO, and the jamming detection probability of the wideband SCAJ receiver with lower phase noise outperforms that of the narrowband receiver using the same center frequency. Furthermore,an accurate phase noise estimation and compensation scheme can improve the jamming detection capability of the SCAJ receiver in high frequency bands and approach to the upper bound.
基金supported in part by National Sciences Foundation of China grants ( 11672001, 81571691,81771844)
文摘Objective Patients with repaired tetralogy of Fallot(rTOF)account for the majority of cases with late onset right ventricle(RV)failure.The current surgical approach,including pulmonary valve replacement/insertion(PVR),has yielded mixed results with some patients recover RV function and some do not.An innovative surgical approach was proposed to help ventricle to contract and improve RV function qualified by ejection fraction with one or more active contracting bands.Computational biomechanical modelling is a widely used method in cardiovascular study for investigation of mechanisms governing disease development,quantitative diagnostic and treatment strategies and improving surgical designs for better outcome.Muscle active contraction caused by zero-load sarcomere shortening leads to change of zero-load configurations.In lieu of experimenting using real surgery on animal or human,computational simulations(virtual surgery)were performed to test different band combination and insertion options to identify optimal surgery design and band insertion plan.Methods Cardiac magnetic resonance(CMR)data were obtained from one rTOF patient(sex:male,age:22.5 y)before pulmonary valve replacement surgery.The patient was suffering from RV dilation and dysfunction with RV end-systole volume 254.49ml and end-diastole volume 406.91 mL.A total of 15 computational RV/LV/Patch/Band combination models based on(CMR)imaging were constructed to investigate the influence of different band insertion surgery plans.These models included 5 different band insertion models combined and 3 different band contraction ratio(10%,15%and 20%band zero-stress length reduction).These models included 5 different band insertion models:Model 1 with one band at anterior to the middle of papillary muscle;Model 2 with one band at posterior to the middle of papillary muscle;Model 3 with 2 bands which are the ones from Models 1&2 combined;Model 4 with a band at the base of the papillary muscle;Model 5 with 3 bands which is a combination of Models 3&4.A pre-shrink process was performed on in-vivo begin-filling and end-systole MRI data to obtain diastole and systole zero4oad ventricle geometries.An extra 5%-8%shrinkage was applied to obtain corresponding systole zero-load geometry reflecting myocardium sarcomere shortening.The zero-load band length in systole was 10%,15%and 20%shorter than that in diastole according to their corresponding contraction ratio.The nonlinear Mooney-Rivlin model was used to describe the ventricle material properties with their material parameter values adjusted to match measured data with CMR.The band material properties were in the same scale with healthy right ventricle.The RV/LV/Band model construction and solution procedures were the same as described.Results Model 5 with band contraction ratio of 20%has the ability to improve RV ejection fraction to 41.07%,which represented a 3.61%absolute improvement,or 9.6%relative improvement using pre-PVR ejection fraction as the baseline number.The ejection fractions for Models 1-4 with band contraction ratio of 20%were 39.28%,39.47%,38.87%and 40.34%respectively.Compared to models with band contraction ratio15%and 20%,models with band contraction ratio 10%has the least ability on RV ejection fraction improvement with ejection fraction 38.28%,38.00%,38.81%,38.50%and 39.36%corresponding to Models 1-5.Conclusions This pilot work demonstrated that the band insertion surgery may have great potential to improve post-PVR RV cardiac function for patients with repaired TOF.More band contraction ratio and inserted band number may lead to better post-surgery outcome.Further investigations using in-vitro animal experiments and final patient studies are warranted.
文摘[Objective]This study aims to develop a thermodynamically consistent phase-field framework for modeling the initiation and evolution of discontinuous structures in geomaterials.[Methods]Our model introduces crack driving forces derived from the volumetric-deviatoric strain decomposition strategy,incorporating distinct tension,compression,and shear degradation mechanisms.Inertia effects capture compaction-band formation driven by wave-like disturbances,grain crushing,and frictional rearrangement.A monolithic algorithm ensures numerical stability and rapid convergence.[Results]The framework reproduces tensile,shear,mixed tensile-shear,and compressive-shear failures using the Benzeggagh-Kenane criterion.Validation against benchmark simulations-including uniaxial compression of rock-like and triaxial compression of V-notched sandstone specimens-demonstrates accurate predictions of crack initiation stress,localization orientation,and energy dissipation.[Conclusions]The framework provides a unified and robust numerical tool for analyzing the spatiotemporal evolution of strain localization and fracture in geomaterials.[Significance]By linking microscale fracture dynamics with macroscale failure within a thermodynamically consistent scheme,this study advances predictive modeling of rock stability,slope failure,and subsurface energy systems,contributing to safer and more sustainable geotechnical practice.
基金supported by Guangdong Natural Science Foundation(2019A1515011622)Guangdong Provincial Laboratory of Southern Marine Science and Engineering (Zhuhai)(SML2021SP407)。
文摘Separated transmit and receive antennas are employed to improve transmit-receive isolation in conventional short-range radars, which greatly increases the antenna size and misaligns of the transmit/receive radiation patterns. In this paper,a dual circularly polarized(CP) monostatic simultaneous transmit and receive(MSTAR) antenna with enhanced isolation is proposed to alleviate the problem. The proposed antenna consists of one sequentially rotating array(SRA), two beamforming networks(BFN), and a combined decoupling structure. The SRA is shared by the transmit and receive to reduce the size of the antenna and to obtain a consistent transmit and receive pattern.The BFN achieve right-hand CP for transmit and left-hand CP for receive. By exploring the combined decoupling structure of uniplanar compact electromagnetic band gap(UC-EBG) and ringshaped defected ground structure(RS-DGS), good transmitreceive isolation is achieved. The proposed antenna prototype is fabricated and experimentally characterized. The simulated and measured results show good agreement. The demonstrate transmit/receive isolation is height than 33 dB, voltage standing wave ratio is lower than 2, axial ratio is lower than 3 dB, and consistent radiation for both transmit and receive is within4.25-4.35 GHz.
基金support by the National Natural Science Foundation of China (Grant No. 62005049)Natural Science Foundation of Fujian Province (Grant Nos. 2020J01451, 2022J05113)Education and Scientific Research Program for Young and Middleaged Teachers in Fujian Province (Grant No. JAT210035)。
文摘Camouflaged people are extremely expert in actively concealing themselves by effectively utilizing cover and the surrounding environment. Despite advancements in optical detection capabilities through imaging systems, including spectral, polarization, and infrared technologies, there is still a lack of effective real-time method for accurately detecting small-size and high-efficient camouflaged people in complex real-world scenes. Here, this study proposes a snapshot multispectral image-based camouflaged detection model, multispectral YOLO(MS-YOLO), which utilizes the SPD-Conv and Sim AM modules to effectively represent targets and suppress background interference by exploiting the spatial-spectral target information. Besides, the study constructs the first real-shot multispectral camouflaged people dataset(MSCPD), which encompasses diverse scenes, target scales, and attitudes. To minimize information redundancy, MS-YOLO selects an optimal subset of 12 bands with strong feature representation and minimal inter-band correlation as input. Through experiments on the MSCPD, MS-YOLO achieves a mean Average Precision of 94.31% and real-time detection at 65 frames per second, which confirms the effectiveness and efficiency of our method in detecting camouflaged people in various typical desert and forest scenes. Our approach offers valuable support to improve the perception capabilities of unmanned aerial vehicles in detecting enemy forces and rescuing personnel in battlefield.
文摘The performance of the photodetector is significantly impacted by the inherent surface faults in GaAs nanowires(NWs).We combined three-dimensional(3D)gallium arsenide nanowires with zero-dimensional(0D)WS_(2) quantum dot(QDs)materials in a simple and convenient way to form a heterogeneous structure.Various performance enhancements have been realized through the formation of typeⅡenergy bands in heterostructures,opening up new research directions for the future development of photodetector devices.This work successfully fabricated a high-sensitivity photodetector based on WS_(2)QDs/GaAs NWs heterostructure.Under 660 nm laser excitation,the photodetector exhibits a responsivity of 368.07 A/W,a detectivity of 2.7×10^(12)Jones,an external quantum efficiency of 6.47×10^(2)%,a low-noise equivalent power of 2.27×10^(-17)W·Hz^(-1/2),a response time of 0.3 s,and a recovery time of 2.12 s.This study provides a new solution for the preparation of high-performance GaAs detectors and promotes the development of optoelectronic devices for GaAs NWs.
基金Project(51978585)supported by the National Natural Science Foundation,ChinaProject(2022YFB2603404)supported by the National Key Research and Development Program,China+1 种基金Project(U1734207)supported by the High-speed Rail Joint Fund Key Projects of Basic Research,ChinaProject(2023NSFSC1975)supported by the Sichuan Nature and Science Foundation Innovation Research Group Project,China。
文摘The problems associated with vibrations of viaducts and low-frequency structural noise radiation caused by train excitation continue to increase in importance.A new floating-slab track vibration isolator-non-obstructive particle damping-phononic crystal vibration isolator is proposed herein,which uses the particle damping vibration absorption technology and bandgap vibration control theory.The vibration reduction performance of the NOPD-PCVI was analyzed from the perspective of vibration control.The paper explores the structure-borne noise reduction performance of the NOPD-PCVIs installed on different bridge structures under varying service conditions encountered in practical engineering applications.The load transferred to the bridge is obtained from a coupled train-FST-bridge analytical model considering the different structural parameters of bridges.The vibration responses are obtained using the finite element method,while the structural noise radiation is simulated using the frequency-domain boundary element method.Using the particle swarm optimization algorithm,the parameters of the NOPD-PCVI are optimized so that its frequency bandgap matches the dominant bridge structural noise frequency range.The noise reduction performance of the NOPD-PCVIs is compared to the steel-spring isolation under different service conditions.
文摘With a focus on an industrial multivariable system, two subsystems including the flow and the level outputs are analysed and controlled, which have applicability in both real and academic environments. In such a case, at first, each subsystem is distinctively represented by its model, since the outcomes point out that the chosen models have the same behavior as corresponding ones. Then, the industrial multivariable system and its presentation are achieved in line with the integration of these subsystems, since the interaction between them can not actually be ignored. To analyze the interaction presented, the Gershgorin bands need to be acquired, where the results are used to modify the system parameters to appropriate values. Subsequently, in the view of modeling results, the control concept in two different techniques including sequential loop closing control(SLCC) scheme and diagonal dominance control(DDC) schemes is proposed to implement on the system through the Profibus network, as long as the OPC(OLE for process control) server is utilized to communicate between the control schemes presented and the multivariable system. The real test scenarios are carried out and the corresponding outcomes in their present forms are acquired. In the same way, the proposed control schemes results are compared with each other, where the real consequences verify the validity of them in the field of the presented industrial multivariable system control.