Geological studies indicate that Qinghai\|Tibet plateau crust has shortened at least 2500km and the thickness was increased to 60~70km in the past 45Ma. Different researchers advocate different views to explain the s...Geological studies indicate that Qinghai\|Tibet plateau crust has shortened at least 2500km and the thickness was increased to 60~70km in the past 45Ma. Different researchers advocate different views to explain the shortening according to their studies.( Tapponnier,1977;Chang et al,1986;England et al,1986;Murphy,1997;Y.Pan,1999),however it is still unresolved on how much shortening in upper crustal especially in Qiangtang terrain.Qiangtang terrain is located in the center of Qinghai\|Tibet plateau, the tectonic deformation has been resulted from intracontinental convergence and collision of India plate with Eurasian plate.The deformation style of Qiangtang terrain shows east\|west\|trending folds and thrusts which formed in the shallow tectonic level during collisional\|intracontinental period. The folds type is characterized by nonpenetrative\|foliation parallel fold, the hinges have the same trend with the thrusts. These traits are favourable for restoring the balanced cross\|section and measuring the shortening. The balanced reconstruction is based on line balancing on three different stratigraphic sections (A,B and C)across the Northern Qiangtang basin in the area between 85°E and 87°E.The sections are all north\|south\|trending in accordance with the moving direction of thrusts.展开更多
In recent years,the introduction of fused rings own high density and low sensitivity has promoted the development of energetic materials.However,the development of energetic compounds containing fused and bridged ring...In recent years,the introduction of fused rings own high density and low sensitivity has promoted the development of energetic materials.However,the development of energetic compounds containing fused and bridged rings by introducing multiple nitrogen heterocycles at different sites of fused rings is still difficult to progress,which seriously limits the emergence of advanced energetic compounds.In this study,a series of energetic materials choosing different nitrogen rich heterocycles at the vacancies of the fused ring,i.e.,neutral compound 5,6 and their ionic derivatives(compounds 7-12)were designed and synthesized.Compounds 5 and 6 were further confirmed by single crystal X-ray diffraction,while the crystal analysis and theoretical calculations were carried out to explore the relationship between crystal structure and physicochemical properties.All of the newly synthesized compounds(5-12)are insensitive to mechanical stimulation(IS>40 J;FS≥342 N)and they own the high detonation velocity(D:8322-9075 m/s).Notably,hydrazine salt 11 own the higher detonation velocity(9075 m/s)and powder density(1.83 g/cm^(3)),but exhibits lower sensitivity(IS>40 J)than the classical energetic compound RDX(8795 m/s,1.80 g/cm^(3),7.5 J).It is obvious that the combination of 5,6-fused triazolo-triazine and nitropyrazole-tetrazole may be a new energetic skeleton for synthesising the heterocyclic compounds with balanced energy-stability.展开更多
Due to low parameter sensitivity for balanced realiza- tions, balanced structure becomes a good candidate for an statespace adaptive infinite impluse response (IIR) filter. Here, using coefficients of the transfer f...Due to low parameter sensitivity for balanced realiza- tions, balanced structure becomes a good candidate for an statespace adaptive infinite impluse response (IIR) filter. Here, using coefficients of the transfer function as the adaptive filtering parameters, a balanced adaptive IIR filtering algorithm is proposed for output-error minimization. The algorithm in the internally balanced realization guarantees that the adaptive IIR filter always minimizes the ratio of maximum-to-minimum eigenvalue of the Grammian matrices at the each iteration. Simulation results are provided to corroborate the proposed algorithm.展开更多
Regressive models were obtained by employing '311 B' and '3414' optimal regressive desingns through 5 year (1993~1997) field experiment,and by datum processing with computer.These models express the...Regressive models were obtained by employing '311 B' and '3414' optimal regressive desingns through 5 year (1993~1997) field experiment,and by datum processing with computer.These models express the relationships between corn yields in high,middle and low yield areas and N,P,and K application rates in black soil.By analysis to the models,the fertilizer application rates for maximum yield and optimal yield were achieved.展开更多
The optimization of high density and concentrated-weight freights loading requires an even distribution of the freight's weight and unconcentrated loading on the floor of the car.Based on the characteristics of co...The optimization of high density and concentrated-weight freights loading requires an even distribution of the freight's weight and unconcentrated loading on the floor of the car.Based on the characteristics of concentrated-weight category freights,an improvement method is put forward to build freight towers and a greedy-construction algorithm is utilized based on heuristic information for the initial layout.Then a feasibility analysis is performed to judge if the balanced and unconcentrated loading constrains are reached.Through introducing optimization or adjustment methods,an overall optimal solution can be obtained.Experiments are conducted using data generated from real cases showing the effectiveness of our approach: volume utility ratio of 90.4% and load capacity utility ratio of 86.7% which is comparably even to the packing of the general freights.展开更多
To investigate the overall performance of reverse energy bypass scramjet,firstly a variable spe⁃cific heat method combined with a chemical balance calculation module for combustion products were used to es⁃tablish a b...To investigate the overall performance of reverse energy bypass scramjet,firstly a variable spe⁃cific heat method combined with a chemical balance calculation module for combustion products were used to es⁃tablish a benchmark scramjet performance evaluation model.Based on the test data of typical flying point of Mach 7 with the altitude of 29 km,the reliability of the model was verified.The deviations of parameters such as the to⁃tal pressure loss of combustor between the model and the test data were analyzed.Furtherly,an analytical method for post-combustion magnetohydrodynamic power generation was established;by embedding the above method into the overall performance evaluation model,performance prediction considering the power generation effect was realized.Finally,based on the above model,variety regulations of the inlet and the outlet parameters of the power generation channel and performance parameters including the engine specific impulse and the unit thrust under different enthalpy extraction ratios and load factors were analyzed.It could be concluded that the model can reliably predict the variations of key parameters.As the value of the load factor increases,the value of the conduc⁃tivity required to reach the specified enthalpy extraction ratio first decreases and then increases,which is approxi⁃mately parabolic.In order to reduce the demand for the gas conductivity for MHD power generation,the load fac⁃tor should be around 0.5.When the load factor is 0.4 and the magnetic induction intensity is 2.5 T,if the enthalpy extraction ratio reaches 0.5%,the engine specific impulse performance reduces about 3.58%.展开更多
Energetic compounds bearing the trinitromethyl group are garnering broad attraction as potential candidates for a new generation of high energy dense oxidizers.In this work,an effective dual modulation strategy involv...Energetic compounds bearing the trinitromethyl group are garnering broad attraction as potential candidates for a new generation of high energy dense oxidizers.In this work,an effective dual modulation strategy involving both molecular isomerization and crystal morphology control was employed to design and optimize trinitromethyl-oxadiazole with improved comprehensive performance.Utilizing this dual strategy,3,5-bis(trinitromethyl)-1,2,4-oxadiazole(3)was synthesized,resulting in the formation of two distinct crystal morphologies(needle and sheet)corresponding to two crystal forms(3-a and3-b).Encouragingly,while maintaining ultra-high oxygen balance(21.73%),3 achieves impressive densities(1.97-1.98 g/cm^(3)).To our knowledge,the density of 1.98 g/cm^(3)for 3-a sets a new record among that of nitrogen-rich monocyclic compounds.Notably,practical crystal morphology prediction was creatively introduced to guide the experimental crystallization conditions of 3,increasing the impact sensitivity and friction sensitivity from 1 J to 80 N(3-a)to 10 J and 240 N(3-b),respectively.Additionally,the crystal structural analyses and theoretical calculations were conducted to elucidate the reasons of differences between 3-a and 3-b in density and stability.This work provides an efficient strategy to enhance performance of trinitromethyl derivatives,broadening the path and expanding the toolbox for energetic materials.展开更多
The concept of TNT(Trinitrotoluene,C_7H_5N_3O_6)equivalence is often invoked to evaluate the performance and predict the explosion parameters of different types of explosives.However,due to its low prediction accuracy...The concept of TNT(Trinitrotoluene,C_7H_5N_3O_6)equivalence is often invoked to evaluate the performance and predict the explosion parameters of different types of explosives.However,due to its low prediction accuracy and limited application range,the use of TNT equivalence for predicting explosion parameters in a confined space is rare.Compared with explosions in free fields,the process of explosive energy release in a confined space is closely related to various factors such as oxygen balance,combustible components content,and surrounding oxygen content.Studies have shown that in a confined space,negative oxygen balance explosives react with surrounding oxygen during afterburning,resulting in additional energy release and enhanced blast effects.The mechanism of energy release during afterburning is highly complex,making it challenging to determine the TNT equivalence for blast effects in a confined space.Therefore,this remains an active area of research.In this study,internal blast experiments were conducted using TNT and three other explosives under both air and N_2(Nitrogen)conditions to obtain explosion parameters including blast wave overpressure,quasi-static pressure,and temperature.The influences of oxygen balance and external oxygen content on energy release are analyzed.The author proposes principles for determining TNT equivalence for internal explosions while verifying the accuracy of obtained blast parameters through calculations based on TNT equivalence.These findings can serve as references for predicting blast performance.展开更多
In low Earth orbit(LEO)satellite networks,on-board energy resources of each satellite are extremely limited.And with the increase of the node number and the traffic transmis-sion pressure,the energy consumption in the...In low Earth orbit(LEO)satellite networks,on-board energy resources of each satellite are extremely limited.And with the increase of the node number and the traffic transmis-sion pressure,the energy consumption in the networks presents uneven distribution.To achieve energy balance in networks,an energy consumption balancing optimization algorithm of LEO networks based on distance energy factor(DEF)is proposed.The DEF is defined as the function of the inter-satellite link dis-tance and the cumulative network energy consumption ratio.According to the minimum sum of DEF on inter-satellite links,an energy consumption balancing algorithm based on DEF is pro-posed,which can realize dynamic traffic transmission optimiza-tion of multiple traffic services.It can effectively reduce the energy consumption pressure of core nodes with high energy consumption in the network,make full use of idle nodes with low energy consumption,and optimize the energy consumption dis-tribution of the whole network according to the continuous itera-tions of each traffic service flow.Simulation results show that,compared with the traditional shortest path algorithm,the pro-posed method can improve the balancing performance of nodes by 75%under certain traffic pressure,and realize the optimiza-tion of energy consumption balancing of the whole network.展开更多
Tracking the fast-moving object in occlusion situations is an important research topic in computer vision. Despite numerous notable contributions have been made in this field,few of them simultaneously incorporate bot...Tracking the fast-moving object in occlusion situations is an important research topic in computer vision. Despite numerous notable contributions have been made in this field,few of them simultaneously incorporate both object's extrinsic features and intrinsic motion patterns into their methodologies,thereby restricting the potential for tracking accuracy improvement. In this paper, on the basis of efficient convolution operators(ECO) model, a speed-accuracy-balanced model is put forward. This model uses the simple correlation filter to track the object in real-time, and adopts the sophisticated deep-learning neural network to extract high-level features to train a more complex filter correcting the tracking mistakes, when the tracking state is judged to be poor. Furthermore, in the context of scenarios involving regular fast-moving, a motion model based on Kalman filter is designed which greatly promotes the tracking stability, because this motion model could predict the object's future location from its previous movement pattern. Additionally,instead of periodically updating our tracking model and training samples, a constrained condition for updating is proposed,which effectively mitigates contamination to the tracker from the background and undesirable samples avoiding model degradation when occlusion happens. From comprehensive experiments, our tracking model obtains better performance than ECO on object tracking benchmark 2015(OTB100), and improves the area under curve(AUC) by about 8% and 32% compared with ECO, in the scenarios of fast-moving and occlusion on our own collected dataset.展开更多
A low-Earth-orbit(LEO)satellite network can provide full-coverage access services worldwide and is an essential candidate for future 6G networking.However,the large variability of the geographic distribution of the Ea...A low-Earth-orbit(LEO)satellite network can provide full-coverage access services worldwide and is an essential candidate for future 6G networking.However,the large variability of the geographic distribution of the Earth’s population leads to an uneven service volume distribution of access service.Moreover,the limitations on the resources of satellites are far from being able to serve the traffic in hotspot areas.To enhance the forwarding capability of satellite networks,we first assess how hotspot areas under different load cases and spatial scales significantly affect the network throughput of an LEO satellite network overall.Then,we propose a multi-region cooperative traffic scheduling algorithm.The algorithm migrates low-grade traffic from hotspot areas to coldspot areas for forwarding,significantly increasing the overall throughput of the satellite network while sacrificing some latency of end-to-end forwarding.This algorithm can utilize all the global satellite resources and improve the utilization of network resources.We model the cooperative multi-region scheduling of large-scale LEO satellites.Based on the model,we build a system testbed using OMNET++to compare the proposed method with existing techniques.The simulations show that our proposed method can reduce the packet loss probability by 30%and improve the resource utilization ratio by 3.69%.展开更多
文摘Geological studies indicate that Qinghai\|Tibet plateau crust has shortened at least 2500km and the thickness was increased to 60~70km in the past 45Ma. Different researchers advocate different views to explain the shortening according to their studies.( Tapponnier,1977;Chang et al,1986;England et al,1986;Murphy,1997;Y.Pan,1999),however it is still unresolved on how much shortening in upper crustal especially in Qiangtang terrain.Qiangtang terrain is located in the center of Qinghai\|Tibet plateau, the tectonic deformation has been resulted from intracontinental convergence and collision of India plate with Eurasian plate.The deformation style of Qiangtang terrain shows east\|west\|trending folds and thrusts which formed in the shallow tectonic level during collisional\|intracontinental period. The folds type is characterized by nonpenetrative\|foliation parallel fold, the hinges have the same trend with the thrusts. These traits are favourable for restoring the balanced cross\|section and measuring the shortening. The balanced reconstruction is based on line balancing on three different stratigraphic sections (A,B and C)across the Northern Qiangtang basin in the area between 85°E and 87°E.The sections are all north\|south\|trending in accordance with the moving direction of thrusts.
基金supported by the National Natural Science Foundation of China(Grant No.21875110,22075143)the Science Challenge Projectthe Qing Lan Project for the grant。
文摘In recent years,the introduction of fused rings own high density and low sensitivity has promoted the development of energetic materials.However,the development of energetic compounds containing fused and bridged rings by introducing multiple nitrogen heterocycles at different sites of fused rings is still difficult to progress,which seriously limits the emergence of advanced energetic compounds.In this study,a series of energetic materials choosing different nitrogen rich heterocycles at the vacancies of the fused ring,i.e.,neutral compound 5,6 and their ionic derivatives(compounds 7-12)were designed and synthesized.Compounds 5 and 6 were further confirmed by single crystal X-ray diffraction,while the crystal analysis and theoretical calculations were carried out to explore the relationship between crystal structure and physicochemical properties.All of the newly synthesized compounds(5-12)are insensitive to mechanical stimulation(IS>40 J;FS≥342 N)and they own the high detonation velocity(D:8322-9075 m/s).Notably,hydrazine salt 11 own the higher detonation velocity(9075 m/s)and powder density(1.83 g/cm^(3)),but exhibits lower sensitivity(IS>40 J)than the classical energetic compound RDX(8795 m/s,1.80 g/cm^(3),7.5 J).It is obvious that the combination of 5,6-fused triazolo-triazine and nitropyrazole-tetrazole may be a new energetic skeleton for synthesising the heterocyclic compounds with balanced energy-stability.
基金supported by the National Natural Science Foundation of China(61201321)the Basic Research Foundation of Northwestern Polytechnical University(JC20100217)
文摘Due to low parameter sensitivity for balanced realiza- tions, balanced structure becomes a good candidate for an statespace adaptive infinite impluse response (IIR) filter. Here, using coefficients of the transfer function as the adaptive filtering parameters, a balanced adaptive IIR filtering algorithm is proposed for output-error minimization. The algorithm in the internally balanced realization guarantees that the adaptive IIR filter always minimizes the ratio of maximum-to-minimum eigenvalue of the Grammian matrices at the each iteration. Simulation results are provided to corroborate the proposed algorithm.
文摘Regressive models were obtained by employing '311 B' and '3414' optimal regressive desingns through 5 year (1993~1997) field experiment,and by datum processing with computer.These models express the relationships between corn yields in high,middle and low yield areas and N,P,and K application rates in black soil.By analysis to the models,the fertilizer application rates for maximum yield and optimal yield were achieved.
基金Project(71371193)supported by the National Natural Science Foundation of ChinaProjects(2005K1001,2007K1005)supported by Guangzhou-Shenzhen Railway Company Limited,China
文摘The optimization of high density and concentrated-weight freights loading requires an even distribution of the freight's weight and unconcentrated loading on the floor of the car.Based on the characteristics of concentrated-weight category freights,an improvement method is put forward to build freight towers and a greedy-construction algorithm is utilized based on heuristic information for the initial layout.Then a feasibility analysis is performed to judge if the balanced and unconcentrated loading constrains are reached.Through introducing optimization or adjustment methods,an overall optimal solution can be obtained.Experiments are conducted using data generated from real cases showing the effectiveness of our approach: volume utility ratio of 90.4% and load capacity utility ratio of 86.7% which is comparably even to the packing of the general freights.
文摘To investigate the overall performance of reverse energy bypass scramjet,firstly a variable spe⁃cific heat method combined with a chemical balance calculation module for combustion products were used to es⁃tablish a benchmark scramjet performance evaluation model.Based on the test data of typical flying point of Mach 7 with the altitude of 29 km,the reliability of the model was verified.The deviations of parameters such as the to⁃tal pressure loss of combustor between the model and the test data were analyzed.Furtherly,an analytical method for post-combustion magnetohydrodynamic power generation was established;by embedding the above method into the overall performance evaluation model,performance prediction considering the power generation effect was realized.Finally,based on the above model,variety regulations of the inlet and the outlet parameters of the power generation channel and performance parameters including the engine specific impulse and the unit thrust under different enthalpy extraction ratios and load factors were analyzed.It could be concluded that the model can reliably predict the variations of key parameters.As the value of the load factor increases,the value of the conduc⁃tivity required to reach the specified enthalpy extraction ratio first decreases and then increases,which is approxi⁃mately parabolic.In order to reduce the demand for the gas conductivity for MHD power generation,the load fac⁃tor should be around 0.5.When the load factor is 0.4 and the magnetic induction intensity is 2.5 T,if the enthalpy extraction ratio reaches 0.5%,the engine specific impulse performance reduces about 3.58%.
基金supported by the National Natural Science Foundation of China(No.22375021,22235003,22261132516&22205021)the BIT Research and Innovation 265 Promoting Project(Grant No.2023YCXZ017)。
文摘Energetic compounds bearing the trinitromethyl group are garnering broad attraction as potential candidates for a new generation of high energy dense oxidizers.In this work,an effective dual modulation strategy involving both molecular isomerization and crystal morphology control was employed to design and optimize trinitromethyl-oxadiazole with improved comprehensive performance.Utilizing this dual strategy,3,5-bis(trinitromethyl)-1,2,4-oxadiazole(3)was synthesized,resulting in the formation of two distinct crystal morphologies(needle and sheet)corresponding to two crystal forms(3-a and3-b).Encouragingly,while maintaining ultra-high oxygen balance(21.73%),3 achieves impressive densities(1.97-1.98 g/cm^(3)).To our knowledge,the density of 1.98 g/cm^(3)for 3-a sets a new record among that of nitrogen-rich monocyclic compounds.Notably,practical crystal morphology prediction was creatively introduced to guide the experimental crystallization conditions of 3,increasing the impact sensitivity and friction sensitivity from 1 J to 80 N(3-a)to 10 J and 240 N(3-b),respectively.Additionally,the crystal structural analyses and theoretical calculations were conducted to elucidate the reasons of differences between 3-a and 3-b in density and stability.This work provides an efficient strategy to enhance performance of trinitromethyl derivatives,broadening the path and expanding the toolbox for energetic materials.
文摘The concept of TNT(Trinitrotoluene,C_7H_5N_3O_6)equivalence is often invoked to evaluate the performance and predict the explosion parameters of different types of explosives.However,due to its low prediction accuracy and limited application range,the use of TNT equivalence for predicting explosion parameters in a confined space is rare.Compared with explosions in free fields,the process of explosive energy release in a confined space is closely related to various factors such as oxygen balance,combustible components content,and surrounding oxygen content.Studies have shown that in a confined space,negative oxygen balance explosives react with surrounding oxygen during afterburning,resulting in additional energy release and enhanced blast effects.The mechanism of energy release during afterburning is highly complex,making it challenging to determine the TNT equivalence for blast effects in a confined space.Therefore,this remains an active area of research.In this study,internal blast experiments were conducted using TNT and three other explosives under both air and N_2(Nitrogen)conditions to obtain explosion parameters including blast wave overpressure,quasi-static pressure,and temperature.The influences of oxygen balance and external oxygen content on energy release are analyzed.The author proposes principles for determining TNT equivalence for internal explosions while verifying the accuracy of obtained blast parameters through calculations based on TNT equivalence.These findings can serve as references for predicting blast performance.
基金supported by the National Key Research and Development Program(2021YFB2900604).
文摘In low Earth orbit(LEO)satellite networks,on-board energy resources of each satellite are extremely limited.And with the increase of the node number and the traffic transmis-sion pressure,the energy consumption in the networks presents uneven distribution.To achieve energy balance in networks,an energy consumption balancing optimization algorithm of LEO networks based on distance energy factor(DEF)is proposed.The DEF is defined as the function of the inter-satellite link dis-tance and the cumulative network energy consumption ratio.According to the minimum sum of DEF on inter-satellite links,an energy consumption balancing algorithm based on DEF is pro-posed,which can realize dynamic traffic transmission optimiza-tion of multiple traffic services.It can effectively reduce the energy consumption pressure of core nodes with high energy consumption in the network,make full use of idle nodes with low energy consumption,and optimize the energy consumption dis-tribution of the whole network according to the continuous itera-tions of each traffic service flow.Simulation results show that,compared with the traditional shortest path algorithm,the pro-posed method can improve the balancing performance of nodes by 75%under certain traffic pressure,and realize the optimiza-tion of energy consumption balancing of the whole network.
基金supported by the National Nature Science Foundation of China (62373246,62203299)the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University (SL2022MS008,SL2020ZD206,SL2022MS010)。
文摘Tracking the fast-moving object in occlusion situations is an important research topic in computer vision. Despite numerous notable contributions have been made in this field,few of them simultaneously incorporate both object's extrinsic features and intrinsic motion patterns into their methodologies,thereby restricting the potential for tracking accuracy improvement. In this paper, on the basis of efficient convolution operators(ECO) model, a speed-accuracy-balanced model is put forward. This model uses the simple correlation filter to track the object in real-time, and adopts the sophisticated deep-learning neural network to extract high-level features to train a more complex filter correcting the tracking mistakes, when the tracking state is judged to be poor. Furthermore, in the context of scenarios involving regular fast-moving, a motion model based on Kalman filter is designed which greatly promotes the tracking stability, because this motion model could predict the object's future location from its previous movement pattern. Additionally,instead of periodically updating our tracking model and training samples, a constrained condition for updating is proposed,which effectively mitigates contamination to the tracker from the background and undesirable samples avoiding model degradation when occlusion happens. From comprehensive experiments, our tracking model obtains better performance than ECO on object tracking benchmark 2015(OTB100), and improves the area under curve(AUC) by about 8% and 32% compared with ECO, in the scenarios of fast-moving and occlusion on our own collected dataset.
基金This work was supported by the National Key R&D Program of China(2021YFB2900604).
文摘A low-Earth-orbit(LEO)satellite network can provide full-coverage access services worldwide and is an essential candidate for future 6G networking.However,the large variability of the geographic distribution of the Earth’s population leads to an uneven service volume distribution of access service.Moreover,the limitations on the resources of satellites are far from being able to serve the traffic in hotspot areas.To enhance the forwarding capability of satellite networks,we first assess how hotspot areas under different load cases and spatial scales significantly affect the network throughput of an LEO satellite network overall.Then,we propose a multi-region cooperative traffic scheduling algorithm.The algorithm migrates low-grade traffic from hotspot areas to coldspot areas for forwarding,significantly increasing the overall throughput of the satellite network while sacrificing some latency of end-to-end forwarding.This algorithm can utilize all the global satellite resources and improve the utilization of network resources.We model the cooperative multi-region scheduling of large-scale LEO satellites.Based on the model,we build a system testbed using OMNET++to compare the proposed method with existing techniques.The simulations show that our proposed method can reduce the packet loss probability by 30%and improve the resource utilization ratio by 3.69%.