The quantum bacterial foraging optimization(QBFO)algorithm has the characteristics of strong robustness and global searching ability. In the classical QBFO algorithm, the rotation angle updated by the rotation gate is...The quantum bacterial foraging optimization(QBFO)algorithm has the characteristics of strong robustness and global searching ability. In the classical QBFO algorithm, the rotation angle updated by the rotation gate is discrete and constant,which cannot affect the situation of the solution space and limit the diversity of bacterial population. In this paper, an improved QBFO(IQBFO) algorithm is proposed, which can adaptively make the quantum rotation angle continuously updated and enhance the global search ability. In the initialization process, the modified probability of the optimal rotation angle is introduced to avoid the existence of invariant solutions. The modified operator of probability amplitude is adopted to further increase the population diversity.The tests based on benchmark functions verify the effectiveness of the proposed algorithm. Moreover, compared with the integerorder PID controller, the fractional-order proportion integration differentiation(PID) controller increases the complexity of the system with better flexibility and robustness. Thus the fractional-order PID controller is applied to the servo system. The tuning results of PID parameters of the fractional-order servo system show that the proposed algorithm has a good performance in tuning the PID parameters of the fractional-order servo system.展开更多
The utilization of biomimicry of bacterial foraging strategy was considered to develop an adaptive control strategy for mobile robot, and a bacterial foraging approach was proposed for robot path planning. In the prop...The utilization of biomimicry of bacterial foraging strategy was considered to develop an adaptive control strategy for mobile robot, and a bacterial foraging approach was proposed for robot path planning. In the proposed model, robot that mimics the behavior of bacteria is able to determine an optimal collision-free path between a start and a target point in the environment surrounded by obstacles. In the simulation, two test scenarios of static environment with different number obstacles were adopted to evaluate the performance of the proposed method. Simulation results show that the robot which reflects the bacterial foraging behavior can adapt to complex environments in the planned trajectories with both satisfactory accuracy and stability.展开更多
基金supported by the National Natural Science Foundation of China(6137415361473138)+2 种基金Natural Science Foundation of Jiangsu Province(BK20151130)Six Talent Peaks Project in Jiangsu Province(2015-DZXX-011)China Scholarship Council Fund(201606845005)
文摘The quantum bacterial foraging optimization(QBFO)algorithm has the characteristics of strong robustness and global searching ability. In the classical QBFO algorithm, the rotation angle updated by the rotation gate is discrete and constant,which cannot affect the situation of the solution space and limit the diversity of bacterial population. In this paper, an improved QBFO(IQBFO) algorithm is proposed, which can adaptively make the quantum rotation angle continuously updated and enhance the global search ability. In the initialization process, the modified probability of the optimal rotation angle is introduced to avoid the existence of invariant solutions. The modified operator of probability amplitude is adopted to further increase the population diversity.The tests based on benchmark functions verify the effectiveness of the proposed algorithm. Moreover, compared with the integerorder PID controller, the fractional-order proportion integration differentiation(PID) controller increases the complexity of the system with better flexibility and robustness. Thus the fractional-order PID controller is applied to the servo system. The tuning results of PID parameters of the fractional-order servo system show that the proposed algorithm has a good performance in tuning the PID parameters of the fractional-order servo system.
基金Project(61173032)supported by the National Natural Science Foundation of ChinaProject(20090406)supported by the Tianjin Scientific and Technological Development Fund of Higher Education of China
文摘The utilization of biomimicry of bacterial foraging strategy was considered to develop an adaptive control strategy for mobile robot, and a bacterial foraging approach was proposed for robot path planning. In the proposed model, robot that mimics the behavior of bacteria is able to determine an optimal collision-free path between a start and a target point in the environment surrounded by obstacles. In the simulation, two test scenarios of static environment with different number obstacles were adopted to evaluate the performance of the proposed method. Simulation results show that the robot which reflects the bacterial foraging behavior can adapt to complex environments in the planned trajectories with both satisfactory accuracy and stability.