This study examines the effects of friction stir welding(FSW)and post-weld heat treatment(PWHT)on the grain boundary character distribution and corrosion resistance of cross sectional(top and bottom)regions of nickel-...This study examines the effects of friction stir welding(FSW)and post-weld heat treatment(PWHT)on the grain boundary character distribution and corrosion resistance of cross sectional(top and bottom)regions of nickel-and molybdenum-free high-nitrogen austenitic stainless steel(HNASS).FSW at 400 rpm and 30 mm/min resulted in finer grains(4.18μm)and higher coincident site lattice(CSL)boundaries(32.3%)at the top of the stir zone(SZ)due to dynamic recrystallization(DRX).PWHT at 900℃for 1 h led to grain coarsening(12.91μm the bottom SZ)but enhanced CSL boundaries from 24.6%to 30.2%,improving grain boundary stability.PWHT reduced the kernel average misorientation(KAM)by 14.9%in the SZ-top layer and 20.4%in the SZ-bottom layer,accompanied by a 25%decrease in hardness in the SZ-top layer and 26.7%in the SZ-bottom layer,indicating strain recovery and reduced dislocation density.Potentiodynamic polarization tests(PDP)showed a 18%increase in pitting potential and a 76%reduction in corrosion rate after PWHT.The improvement in corrosion resistance is attributed to the increase inΣ3 twin boundaries,which enhance grain boundary stability and reduce susceptibility to localized corrosion.These findings highlight the role of PWHT in refining the microstructure and strengthening corrosion resistance,making HNASS a promising material for demanding applications.展开更多
The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant ...The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance.展开更多
A series of sweeping detonation experiments were conducted to study the grain boundary effects during the primary spallation of high-purity copper cylinder.The free surface velocity profile of the shocked samples was ...A series of sweeping detonation experiments were conducted to study the grain boundary effects during the primary spallation of high-purity copper cylinder.The free surface velocity profile of the shocked samples was measured by Doppler pins systems.The soft-recovered samples were characterized by optical and electron backscatter diffraction microscopy,and the effects of microstructures like grain boundaries,and crystal orientation on spall behavior were investigated.The results indicated that the critical stress of deformation twinning in cylindrical copper increased.The nucleation sites of spallation damage were determined by the joint influence of the grain orientation(Taylor factor)and the angle between grain boundaries and radial impact-stress direction.Voids were prone to nucleating at the grain boundaries perpendicular to the radial impact-stress direction.Nevertheless,the number of voids nucleated at boundaries was relatively different from the results obtained from the plate impact experiment and plate sweeping detonation experiment,which is a result of the curvature that existed in the cylindrical copper and the obliquity of the impact-stress direction during sweeping detonation loading.展开更多
In this paper, an improved approach is presented to reconstruct two dimensional conduc- tor profile illuminated by incident plane waves of multiple frequencies and directions via amplitudes of backscattered field in n...In this paper, an improved approach is presented to reconstruct two dimensional conduc- tor profile illuminated by incident plane waves of multiple frequencies and directions via amplitudes of backscattered field in near regions. Newton-Kantorovitch algorithm is adopted to cast the non- linear coupled integral equations into linearized form, method of moment is used to transform the above linearized integral equations into matrix form, the resulting ill-posed overdetermined linear equations are solved using pseudoinverse technique based on Gram-Schedmit orthogonal procedure. Initial values are determined by solving a nonlinear least aquare error problem to establish an equivat lent circular cylinder. The effects of various parameters on reconstruction quality are discussed with numerical results and analysis.展开更多
文摘This study examines the effects of friction stir welding(FSW)and post-weld heat treatment(PWHT)on the grain boundary character distribution and corrosion resistance of cross sectional(top and bottom)regions of nickel-and molybdenum-free high-nitrogen austenitic stainless steel(HNASS).FSW at 400 rpm and 30 mm/min resulted in finer grains(4.18μm)and higher coincident site lattice(CSL)boundaries(32.3%)at the top of the stir zone(SZ)due to dynamic recrystallization(DRX).PWHT at 900℃for 1 h led to grain coarsening(12.91μm the bottom SZ)but enhanced CSL boundaries from 24.6%to 30.2%,improving grain boundary stability.PWHT reduced the kernel average misorientation(KAM)by 14.9%in the SZ-top layer and 20.4%in the SZ-bottom layer,accompanied by a 25%decrease in hardness in the SZ-top layer and 26.7%in the SZ-bottom layer,indicating strain recovery and reduced dislocation density.Potentiodynamic polarization tests(PDP)showed a 18%increase in pitting potential and a 76%reduction in corrosion rate after PWHT.The improvement in corrosion resistance is attributed to the increase inΣ3 twin boundaries,which enhance grain boundary stability and reduce susceptibility to localized corrosion.These findings highlight the role of PWHT in refining the microstructure and strengthening corrosion resistance,making HNASS a promising material for demanding applications.
基金supported by the 2021 Open Project Fund of Science and Technology on Electromechanical Dynamic Control Laboratory,grant number 212-C-J-F-QT-2022-0020China Postdoctoral Science Foundation,grant number 2021M701713+1 种基金Postgraduate Research&Practice Innovation Program of Jiangsu Province,grant number KYCX23_0511the Jiangsu Funding Program for Excellent Postdoctoral Talent,grant number 20220ZB245。
文摘The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance.
基金Projects(51871243,51574290)supported by the National Natural Science Foundation of ChinaProject(2019JJ40381)supported by the Natural Science Foundation of Hunan Province,ChinaProject supported by the Guangdong-Hong Kong-Macao Joint Laboratory for Neutron Scattering Science and Technology,China。
文摘A series of sweeping detonation experiments were conducted to study the grain boundary effects during the primary spallation of high-purity copper cylinder.The free surface velocity profile of the shocked samples was measured by Doppler pins systems.The soft-recovered samples were characterized by optical and electron backscatter diffraction microscopy,and the effects of microstructures like grain boundaries,and crystal orientation on spall behavior were investigated.The results indicated that the critical stress of deformation twinning in cylindrical copper increased.The nucleation sites of spallation damage were determined by the joint influence of the grain orientation(Taylor factor)and the angle between grain boundaries and radial impact-stress direction.Voids were prone to nucleating at the grain boundaries perpendicular to the radial impact-stress direction.Nevertheless,the number of voids nucleated at boundaries was relatively different from the results obtained from the plate impact experiment and plate sweeping detonation experiment,which is a result of the curvature that existed in the cylindrical copper and the obliquity of the impact-stress direction during sweeping detonation loading.
文摘In this paper, an improved approach is presented to reconstruct two dimensional conduc- tor profile illuminated by incident plane waves of multiple frequencies and directions via amplitudes of backscattered field in near regions. Newton-Kantorovitch algorithm is adopted to cast the non- linear coupled integral equations into linearized form, method of moment is used to transform the above linearized integral equations into matrix form, the resulting ill-posed overdetermined linear equations are solved using pseudoinverse technique based on Gram-Schedmit orthogonal procedure. Initial values are determined by solving a nonlinear least aquare error problem to establish an equivat lent circular cylinder. The effects of various parameters on reconstruction quality are discussed with numerical results and analysis.