期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Robust background subtraction in traffic video sequence 被引量:6
1
作者 高韬 刘正光 +3 位作者 岳士弘 张军 梅建强 高文春 《Journal of Central South University》 SCIE EI CAS 2010年第1期187-195,共9页
For intelligent transportation surveillance, a novel background model based on Mart wavelet kernel and a background subtraction technique based on binary discrete wavelet transforms were introduced. The background mod... For intelligent transportation surveillance, a novel background model based on Mart wavelet kernel and a background subtraction technique based on binary discrete wavelet transforms were introduced. The background model kept a sample of intensity values for each pixel in the image and used this sample to estimate the probability density function of the pixel intensity. The density function was estimated using a new Marr wavelet kernel density estimation technique. Since this approach was quite general, the model could approximate any distribution for the pixel intensity without any assumptions about the underlying distribution shape. The background and current frame were transformed in the binary discrete wavelet domain, and background subtraction was performed in each sub-band. After obtaining the foreground, shadow was eliminated by an edge detection method. Experimental results show that the proposed method produces good results with much lower computational complexity and effectively extracts the moving objects with accuracy ratio higher than 90%, indicating that the proposed method is an effective algorithm for intelligent transportation system. 展开更多
关键词 background modeling background subtraction Marr wavelet binary discrete wavelet transform shadow elimination
在线阅读 下载PDF
Adaptive learning algorithm based on mixture Gaussian background 被引量:9
2
作者 Zha Yufei Bi Duyan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第2期369-376,共8页
The key problem of the adaptive mixture background model is that the parameters can adaptively change according to the input data. To address the problem, a new method is proposed. Firstly, the recursive equations are... The key problem of the adaptive mixture background model is that the parameters can adaptively change according to the input data. To address the problem, a new method is proposed. Firstly, the recursive equations are inferred based on the maximum likelihood rule. Secondly, the forgetting factor and learning rate factor are redefined, and their still more general formulations are obtained by analyzing their practical functions. Lastly, the convergence of the proposed algorithm is proved to enable the estimation converge to a local maximum of the data likelihood function according to the stochastic approximation theory. The experiments show that the proposed learning algorithm excels the formers both in converging rate and accuracy. 展开更多
关键词 Mixture Gaussian model background model Learning algorithm.
在线阅读 下载PDF
Vehicle detection algorithm based on codebook and local binary patterns algorithms 被引量:1
3
作者 许雪梅 周立超 +1 位作者 墨芹 郭巧云 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第2期593-600,共8页
Detecting the moving vehicles in jittering traffic scenes is a very difficult problem because of the complex environment.Only by the color features of the pixel or only by the texture features of image cannot establis... Detecting the moving vehicles in jittering traffic scenes is a very difficult problem because of the complex environment.Only by the color features of the pixel or only by the texture features of image cannot establish a suitable background model for the moving vehicles. In order to solve this problem, the Gaussian pyramid layered algorithm is proposed, combining with the advantages of the Codebook algorithm and the Local binary patterns(LBP) algorithm. Firstly, the image pyramid is established to eliminate the noises generated by the camera shake. Then, codebook model and LBP model are constructed on the low-resolution level and the high-resolution level of Gaussian pyramid, respectively. At last, the final test results are obtained through a set of operations according to the spatial relations of pixels. The experimental results show that this algorithm can not only eliminate the noises effectively, but also save the calculating time with high detection sensitivity and high detection accuracy. 展开更多
关键词 background modeling Gaussian pyramid CODEBOOK Local binary patterns(LBP) moving vehicle detection
在线阅读 下载PDF
Real-time moving object detection for video monitoring systems 被引量:18
4
作者 Wei Zhiqiang Ji Xiaopeng Wang Peng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第4期731-736,共6页
Moving object detection is one of the challenging problems in video monitoring systems, especially when the illumination changes and shadow exists. Amethod for real-time moving object detection is described. Anew back... Moving object detection is one of the challenging problems in video monitoring systems, especially when the illumination changes and shadow exists. Amethod for real-time moving object detection is described. Anew background model is proposed to handle the illumination varition problem. With optical flow technology and background subtraction, a moving object is extracted quickly and accurately. An effective shadow elimination algorithm based on color features is used to refine the moving obj ects. Experimental results demonstrate that the proposed method can update the background exactly and quickly along with the varition of illumination, and the shadow can be eliminated effectively. The proposed algorithm is a real-time one which the foundation for further object recognition and understanding of video mum'toting systems. 展开更多
关键词 video monitoring system moving object detection background subtraction background model shadow elimination.
在线阅读 下载PDF
High efficient moving object extraction and classification in traffic video surveillance 被引量:1
5
作者 Li Zhihua Zhou Fan Tian Xiang Chen Yaowu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第4期858-868,共11页
Moving object extraction and classification are important problems in automated video surveillance systems. A background model based on region segmentation is proposed. An adaptive single Gaussian background model is ... Moving object extraction and classification are important problems in automated video surveillance systems. A background model based on region segmentation is proposed. An adaptive single Gaussian background model is used in the stable region with gradual changes, and a nonparametric model is used in the variable region with jumping changes. A generalized agglomerative scheme is used to merge the pixels in the variable region and fill in the small interspaces. A two-threshold sequential algorithmic scheme is used to group the background samples of the variable region into distinct Gaussian distributions to accelerate the kernel density computation speed of the nonparametric model. In the feature-based object classification phase, the surveillance scene is first partitioned according to the road boundaries of different traffic directions and then re-segmented according to their scene localities. The method improves the discriminability of the features in each partition. AdaBoost method is applied to evaluate the relative importance of the features in each partition respectively and distinguish whether an object is a vehicle, a single human, a human group, or a bike. Experimental results show that the proposed method achieves higher performance in comparison with the existing method. 展开更多
关键词 background model nonparametric model adaptive single Gaussian model object classification
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部