期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Mining pressure monitoring and analysis in fully mechanized backfilling coal mining face-A case study in Zhai Zhen Coal Mine 被引量:16
1
作者 张强 张吉雄 +2 位作者 康涛 孙强 李伟康 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1965-1972,共8页
Fully mechanized solid backfill mining(FMSBM) technology adopts dense backfill body to support the roof. Based on the distinguishing characteristics and mine pressure control principle in this technology, the basic pr... Fully mechanized solid backfill mining(FMSBM) technology adopts dense backfill body to support the roof. Based on the distinguishing characteristics and mine pressure control principle in this technology, the basic principles and methods for mining pressure monitoring were analyzed and established. And the characteristics of overburden strata movement were analyzed by monitoring the support resistance of hydraulic support, the dynamic subsidence of immediate roof, the stress of backfill body, the front abutment pressure, and the mass ratio of cut coal to backfilled materials. On-site strata behavior measurements of 7403 W solid backfilling working face in Zhai Zhen Coal Mine show that the backfill body can effectively support the overburden load, obviously control the overburden strata movement, and weaken the strata behaviors distinctly. Specific performances are as follows. The support resistance decreases obviously; the dynamic subsidence of immediate roof keeps consistent to the variation of backfill body stress, and tends to be stable after the face retreating to 120-150 m away from the cut. The peak value of front abutment pressure arises at 5-12 m before the operating face, and mass ratio is greater than the designed value of 1.15, which effectively ensures the control of strata movement. The research results are bases for intensively studying basic theories of solid backfill mining strata behaviors and its control, and provide theoretical guidance for engineering design in FMSBM. 展开更多
关键词 fully mechanized solid backfill mining(FMSBM) strata movement strata behavior mining pressure monitoring
在线阅读 下载PDF
Dynamic disaster control of backfill mining under thick magmatic rock in one side goaf:A case study 被引量:6
2
作者 XUE Yan-chao XU Tao +2 位作者 WASANTHA P L P YANG Tian-hong FU Teng-fei 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第10期3103-3117,共15页
In order to explore the control effect of backfill mining on dynamic disasters under special geological mining conditions of overlying thick magmatic rock(TMR),a three-dimensional numerical model of a panel of one sid... In order to explore the control effect of backfill mining on dynamic disasters under special geological mining conditions of overlying thick magmatic rock(TMR),a three-dimensional numerical model of a panel of one side goaf in Yangliu coal mine with double-yield backfill material constitutive model was developed.The simulation results were then compared with field monitoring data.The dynamic disaster control effect of both caving and backfill mining was analyzed in three different aspects,i.e.,displacement field,stress field and energy field.The results show that in comparison to the full caving mining method,the bearing capacity of the goaf after backfilling was enhanced,the backfill mining can effectively reduce the stress and energy accumulated in the coal/rock body,and the backfill mining eliminates the further moving space of TMR and prevents its sudden rupture.Before TMR fracture,the subsidence displacement of TMR was reduced by 65.3%,the front abutment stress of panel decreased by 9.4%on average and the high energy concentration zone around panel was also significantly reduced.Overall,the results of this study provide deeper insights into the control of dynamic disasters by backfill mining in mines. 展开更多
关键词 backfill mining thick magmatic rock one side goaf dynamic disaster numerical simulation
在线阅读 下载PDF
Galerkin solution of Winkler foundation-based irregular Kirchhoff plate model and its application in crown pillar optimization 被引量:18
3
作者 彭康 尹旭岩 +3 位作者 尹光志 许江 黄滚 殷志强 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第5期1253-1263,共11页
Irregular plates are very common structures in engineering,such as ore structures in mining.In this work,the Galerkin solution to the problem of a Kirchhoff plate lying on the Winkler foundation with two edges simply ... Irregular plates are very common structures in engineering,such as ore structures in mining.In this work,the Galerkin solution to the problem of a Kirchhoff plate lying on the Winkler foundation with two edges simply supported and the other two clamped supported is derived.Coordinate transformation technique is used during the solving process so that the solution is suitable to irregular shaped plates.The mechanical model and the solution proposed are then used to model the crown pillars between two adjacent levels in Sanshandao gold mine,which uses backfill method for mining operation.After that,an objective function,which takes security,economic profits and filling effect into consideration,is built to evaluate design proposals.Thickness optimizations for crown pillars are finally conducted in both conditions that the vertical stiffness of the foundation is known and unknown.The procedure presented in the work provides the guidance in thickness designing of complex shaped crown pillars and the preparation of backfill materials,thus to achieve the best balance between security and profits. 展开更多
关键词 irregular kirchhoff plate Galerkin method backfill mining crown pillars thickness optimization
在线阅读 下载PDF
Backfill support's backfill and operation properties and evaluation 被引量:4
4
作者 ZHANG Qiang DU Chang-long +3 位作者 ZHANG Ji-xiong WANG Jia-qi LI Meng QI Wen-yue 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第6期1524-1534,共11页
To ensure compacted backfilling, it is essential to ensure the reliability of the performance of a solid backfill support, key equipment for integrating backfilling and mining. To evaluate the backfilling performance ... To ensure compacted backfilling, it is essential to ensure the reliability of the performance of a solid backfill support, key equipment for integrating backfilling and mining. To evaluate the backfilling performance of a backfill support, the concept of backfill and operation properties is proposed in this study. Moreover, it is elaborated in terms of five aspects, namely, structural property, supporting property, tamping property, mechanical response property, and geological adaptation property, which are specifically reflected by 14 indexes including the supporting intensity and vertical roof gap. Seven separate evaluation indexes are selected to build a backfill and operation properties based system for evaluating the design schemes of the backfill support via a multi-index comprehensive evaluation method; then, the evaluation method and process together with measures to control the backfill and operation properties are proposed. By using this system, 11 schemes for optimizing the ZC5200/14.5/3 backfill support at Zhaizhen Coal Mine are evaluated, and scheme #10 is found to show superior vertical roof gap and other backfill and operation properties, thus demonstrating the reasonability of the evaluation system. On this basis, the backfill support research framework of designing initial scheme, optimizing design scheme, selecting the best evaluation indexes, evaluating optimizing scheme, and evaluating operation properties is built; this should serve as an important reference for further studies on the roof controlling performance of a backfill support. 展开更多
关键词 backfilling coal mining backfill and operation properties tamping force vertical roof gap horizontal roofgap evaluation method
在线阅读 下载PDF
Mass ratio design based on compaction properties of backfill materials 被引量:1
5
作者 李猛 张吉雄 +1 位作者 黄鹏 高瑞 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第10期2669-2675,共7页
The backfill-mining mass ratio is the ratio of the mass of the backfill materials in the goaf to the mass of the produced raw coal during solid backfill mining and it is regarded as a direct control index of the backf... The backfill-mining mass ratio is the ratio of the mass of the backfill materials in the goaf to the mass of the produced raw coal during solid backfill mining and it is regarded as a direct control index of the backfill effect in solid backfill mining. To design the backfill-mining mass ratio in a solid backfill mining panel, the backfill-mining mass ratio was defined on the basis of the basic principle of solid backfill mining. In addition, the density-stress relationship of backfill materials under compaction was obtained for five types of materials to derive a design formula for backfill-mining mass ratio. Moreover, the 6304-1 backfill panel under the large-scale dam of Ji′ning No. 3 coal mine was taken as an engineering case to design the backfill-mining mass ratio. In this way, it is found that the designed backfill-mining mass ratio is 1.22, while the mean value of the measured backfill-mining mass ratio is 1.245. Besides, the maximum roof subsidence is only 340 mm which effectively guarantees the backfill effect in the panel and control of strata movement and surface subsidence. 展开更多
关键词 solid backfill mining backfill-mining mass ratio backfill materials in-situ monitoring
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部