期刊文献+
共找到1,623篇文章
< 1 2 82 >
每页显示 20 50 100
Passive earth pressure of narrow backfill considering seismic-unsaturated seepage multi-field coupling effect
1
作者 WANG Ze-yue LIN Hang 《Journal of Central South University》 2025年第4期1447-1467,共21页
Narrow backfill earth pressure estimation is applied to study the stability of supporting structures in the vicinity of existing buildings.Previous narrow backfill earth pressure studies have neglected seismic-unsatur... Narrow backfill earth pressure estimation is applied to study the stability of supporting structures in the vicinity of existing buildings.Previous narrow backfill earth pressure studies have neglected seismic-unsaturated seepage multi-field coupling,resulting in inaccurate estimates.To address these deficiencies,this paper proposed a calculation method for seismic passive earth pressure in unsaturated narrow backfill,based on inclined thin-layer units.It considers the interlayer shear stress,arching effect,and the multi-field coupling of seismic-unsaturated seepage.Additionally,this paper includes a parametric sensitivity analysis.The outcomes indicate that the earthquake passive ground pressure of unsaturated narrow backfill can be reduced by increasing the aspect ratio,seismic acceleration coefficient,and unsaturation parameterα.It can also be reduced by decreasing the effective interior friction angle,soil cohesion,wallearth friction angle,and vertical discharge.Furthermore,for any width soil,lowering the elevation of the action point of passive thrust can be attained by raising the effective interior friction angle,wall-earth friction angle,and unsaturation parameterα.Reducing soil cohesion,seismic acceleration coefficient,and vertical discharge can also lower the height of the application point of passive thrust. 展开更多
关键词 passive earth pressure unsaturated steady seepage arching effect narrow backfill EARTHQUAKE
在线阅读 下载PDF
Mechanical properties and damage evolution law of cemented-gangue-fly-ash backfill modified with different contents of recycled steel fibers
2
作者 CHE Chi-yuan CAO Sheng-gen +5 位作者 ZHANG Yun LIU Yang ZHAO Chang-zheng DU Shu-yu LI Jiang SHAN Chang-hao 《Journal of Central South University》 2025年第7期2661-2678,共18页
The cemented-gangue-fly-ash backfill(CGFB)prepared from coal-based solid waste materials commonly exhibits high brittleness,leading to an increased susceptibility to cracking.Uniaxial compressive strength(UCS),acousti... The cemented-gangue-fly-ash backfill(CGFB)prepared from coal-based solid waste materials commonly exhibits high brittleness,leading to an increased susceptibility to cracking.Uniaxial compressive strength(UCS),acoustic emission(AE),and scanning electron microscopy tests were conducted on CGFB samples with recycled steel fiber(RSF)contents of 0,0.5%,1.0%and 1.5%to assess the mechanical properties and damage evolution law of the CGFB.The research findings indicate that:1)When RSF contents were 0.5%,1%,and 1.5%,respectively,compared to samples without RSF,the UCS decreased by 3.86%,6.76%,and 15.59%,while toughness increased by 69%,98%,and 123%;2)The addition of RSFs reduced the post-peak stress energy activity and increased the fluctuations in the b-value;3)As the RSF dosage increased from 0 to 1.5%,the per unit dissipated strain energy increased from 5.84 to 21.51,and the post-peak released energy increased from 15.07 to 33.76,indicating that the external energy required for the CGFB sample to fail increased;4)The hydration products,such as C-S-H gel,ettringite,and micro-particle materials,were embedded in the damaged areas of the RSFs,increasing the frictional force at the interface between the RSF and CGFB matrix.The shape variability of the RSFs caused interlocking between the RSFs and the matrix.Both mechanisms strengthened the bridging effect of the RSFs in the CGFB,thereby improving the damage resistance capability of CGFB.The excellent damage resistance occurred at an RSF content of 0.5%;thus,this content is recommended for engineering applications. 展开更多
关键词 recycled steel fibers cemented-gangue-fly-ash backfill acoustic emission crack development energy evolution
在线阅读 下载PDF
Improved model-based study of backfill stress distribution considering rock-backfill closure,mine depth,and position along stope length
3
作者 LIU Chun-kang WANG Hong-jiang +1 位作者 WU Ai-xiang LI Hao 《Journal of Central South University》 2025年第7期2717-2731,共15页
During upward horizontal stratified backfill mining,stable backfill is essential for cap and sill pillar recovery.Currently,the primary method for calculating the required strength of backfill is the generalized three... During upward horizontal stratified backfill mining,stable backfill is essential for cap and sill pillar recovery.Currently,the primary method for calculating the required strength of backfill is the generalized three-dimensional(3 D)vertical stress model,which ignores the effect of mine depth,failing to obtain the vertical stress at different positions along stope length.Therefore,this paper develops and validates an improved 3 D model solution through numerical simulation in Rhino-FLAC^(3D),and examines the stress state and stability of backfill under different conditions.The results show that the improved model can accurately calculate the vertical stress at different mine depths and positions along stope length.The error rates between the results of the improved model and numerical simulation are below 4%,indicating high reliability and applicability.The maximum vertical stress(σ_(zz,max))in backfill is positively correlated with the degree of rock-backfill closure,which is enhanced by mine depth and elastic modulus of backfill,while weakened by stope width and inclination,backfill friction angle,and elastic modulus of rock mass.Theσ_(zz,max)reaches its peak when the stope length is 150 m,whileσ_(zz,max)is insensitive to changes in rock-backfill interface parameters.In all cases,the backfill stability can be improved by reducingσ_(zz,max).The results provide theoretical guidance for the backfill strength design and the safe and efficient recovery of ore pillars in deep mining. 展开更多
关键词 backfill mine depth rock-backfill closure stability maximum vertical stress numerical simulation
在线阅读 下载PDF
Failure behavior of rock and steel slag cemented paste backfill composite structures under uniaxial compression:Effects of interface angle and steel slag content
4
作者 HAO Jian-shuai ZHOU Zi-han +1 位作者 CHEN Zhong-hui CHE Zeng-hui 《Journal of Central South University》 2025年第7期2679-2695,共17页
The stability of the“surrounding rock-backfill”com posite system is crucial for the safety of mining stopes.This study systematically investigates the effects of steel slag(SS)content and interface angle on the stre... The stability of the“surrounding rock-backfill”com posite system is crucial for the safety of mining stopes.This study systematically investigates the effects of steel slag(SS)content and interface angle on the strength and failure characteristics of rock and SS-cemented paste backfill composite specimens(RBCS)through uniaxial compression strength tests(UCS),acoustic emission systems(AE),and 3 D digital image correlation monitoring technology(3 D-DIC).The intrinsic mechanism by which SS content influences the strength of SS-CPB was revealed through an analysis of its hydration reaction degree and microstructural characteristics under varying SS content.Moreover,a theoretical strength model incorporating different interface angles was developed to explore the impact of interface inclination on failure modes and mechanical strength.The main conclusions are as follows:The incorporation of SS enhances the plastic characteristics of RBCS and reduces its brittleness,with the increase of SS content,the stress-strain curve of RBCS in the“staircase-like”stag e becomes smoother;When the interface angle is 45°,the RBCS stress-strain curve exhibits a bimodal feature,and the failure mode changes from Y-shaped fractures to interface and axial splitting;The addition of SS results in a reduction of hydration products such as Ca(OH)_(2) in the backfill cementing system and an increase in harmful pores,which weakens the bonding performance and strength of RBCS,and the SS content should not exceed 45%;As the interface angle increases,the strength of RBCS decreases,and the critical interface slip angle decreases first and then increases with the increase in the E S/E R ratio.This study provides technical references for the large-scale application of SS in mine backfill. 展开更多
关键词 steel slag-cemented paste backfill interface angle rock-backfill composite structures failure mode
在线阅读 下载PDF
Effect of magnesium slag and blast furnace slag as partial cement substitutes on properties of cemented tailings backfill
5
作者 YANG Jian YANG Xiao-bing +3 位作者 YAN Ze-peng YIN Sheng-hua ZHANG Xi-zhi QI Yao-bin 《Journal of Central South University》 2025年第7期2696-2716,共21页
Utilizing mine solid waste as a partial cement substitute(CS)to develop new cementitious materials is a significant technological innovation that will decrease the expenses associated with filling mining.To realize th... Utilizing mine solid waste as a partial cement substitute(CS)to develop new cementitious materials is a significant technological innovation that will decrease the expenses associated with filling mining.To realize the resource utilization of magnesium slag(MS)and blast furnace slag(BFS),the effects of different contents of MS and BFS as partial CSs on the deformation and energy characteristics of cemented tailings backfill on different curing ages(3,7,and 28 d)were discussed.Meanwhile,the destabilization failure energy criterion of the backfill was established from the direction of energy change.The results show that the strength of all backfills increased with increasing curing age,and the strengths of the backfills exceeded 1.342 MPa on day 28.The backfill with 50%BFS+50%cement has the best performance in mechanical properties(the maximum strength can reach 6.129 MPa)and is the best choice among these CS combinations.The trend in peak strain and elastic modulus of the backfill with increasing curing age may vary depending on the CS combination.The energy index at peak stress of the backfill with BFS as a partial CS was significantly higher than that of the backfill under other CS combinations.In contrast,the enhancement of the energy index when MS was used as a partial CS was not as significant as BFS.Sharp changes in the energy consumption ratio after continuous smooth changes can be used as a criterion for destabilization and failure of the backfill.The research results can provide guidance for the application of MS and BFS as partial CSs in mine filling. 展开更多
关键词 cemented tailings backfill cement substitute curing age mechanical properties energy evolution energy consumption ratio
在线阅读 下载PDF
Failure mechanisms and destruction characteristics of cemented coal gangue backfill under compression effect of non-uniform load 被引量:1
6
作者 FENG Guo-rui GUO Wei +5 位作者 QI Ting-ye LI Zhu CUI Jia-qing WANG Hao-chen CUI Ye-kai MA Jing-kai 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第8期2676-2693,共18页
Backfill mining is one of the most important technical means for controlling strata movement and reducing surface subsidence and environmental damage during exploitation of underground coal resources. Ensuring the sta... Backfill mining is one of the most important technical means for controlling strata movement and reducing surface subsidence and environmental damage during exploitation of underground coal resources. Ensuring the stability of the backfill bodies is the primary prerequisite for maintaining the safety of the backfilling working face, and the loading characteristics of backfill are closely related to the deformation and subsidence of the roof. Elastic thin plate model was used to explore the non-uniform subsidence law of the roof, and then the non-uniform distribution characteristics of backfill bodies’ load were revealed. Through a self-developed non-uniform loading device combined with acoustic emission (AE) and digital image correlation (DIC) monitoring technology, the synergistic dynamic evolution law of the bearing capacity, apparent crack, and internal fracture of cemented coal gangue backfills (CCGBs) under loads with different degrees of non-uniformity was deeply explored. The results showed that: 1) The uniaxial compressive strength (UCS) of CCGB increased and then decreased with an increase in the degree of non-uniformity of load (DNL). About 40% of DNL was the inflection point of DNL-UCS curve and when DNL exceeded 40%, the strength decreased in a cliff-like manner;2) A positive correlation was observed between the AE ringing count and UCS during the loading process of the specimen, which was manifested by a higher AE ringing count of the high-strength specimen. 3) Shear cracks gradually increased and failure mode of specimens gradually changed from “X” type dominated by tension cracks to inverted “Y” type dominated by shear cracks with an increase in DNL, and the crack opening displacement at the peak stress decreased and then increased. The crack opening displacement at 40% of the DNL was the smallest. This was consistent with the judgment of crack size based on the AE b-value, i. e., it showed the typical characteristics of “small b-value-large crack and large b-value-small crack”. The research results are of significance for preventing the instability and failure of backfill. 展开更多
关键词 cemented coal gangue backfill non-uniform load degree of non-uniformity of load failure mode crack opening displacement
在线阅读 下载PDF
一种简化的基于First-Fit的Backfilling调度策略——RB-FIFT 被引量:6
7
作者 叶庆华 梁毅 孟丹 《计算机工程与应用》 CSCD 北大核心 2003年第2期70-74,共5页
机群作业管理系统是机群系统的重要组成部分,而作业调度策略又是机群作业管理系统的核心内容。作业调度策略的选择不仅关系到机群系统的利用率,还决定用户作业的响应速度和平均执行时间。在节点分配基于空间共享策略(Space-Sharing)的... 机群作业管理系统是机群系统的重要组成部分,而作业调度策略又是机群作业管理系统的核心内容。作业调度策略的选择不仅关系到机群系统的利用率,还决定用户作业的响应速度和平均执行时间。在节点分配基于空间共享策略(Space-Sharing)的机群系统中,传统的基于先来先服务的First-Fit调度策略虽然能够提高机群系统的利用率,却容易引起饥饿问题。文章基于传统的先来先服务的调度策略,提出了一种简化的Backfilling算法,简要叙述了该算法的设计和实现,最后根据模拟实验结果,从用户和系统的角度分析了该算法的性能。 展开更多
关键词 First-Fit算法 RB-FIFT算法 backfilling调度策略 机群作业管理系统
在线阅读 下载PDF
基于Backfilling调度算法的“扩履适足”改进算法 被引量:2
8
作者 付云虹 白树仁 方俊 《计算机工程与科学》 CSCD 2006年第9期94-96,122,共4页
在众多的并行作业调度算法中,Backfilling通常被广泛认为是有效提高CPU利用率的一种算法。该算法是在FCFS算法的基础上,将队列中较小的作业回填(Backfill)到空闲CPU,以提高CPU利用率。但是,当空闲CPU数量仍然无法满足Backfilling算法中... 在众多的并行作业调度算法中,Backfilling通常被广泛认为是有效提高CPU利用率的一种算法。该算法是在FCFS算法的基础上,将队列中较小的作业回填(Backfill)到空闲CPU,以提高CPU利用率。但是,当空闲CPU数量仍然无法满足Backfilling算法中小作业的回填要求时,系统仍有部分CPU闲置,因而也难以达到更好地提高CPU利用率的目的。对于共享内存体系结构的并行计算机系统,本文提出了基于Backfilling算法的“扩履适足”的改进算法。该算法以正在运行的作业的CPU利用率为依据,通过动态调整正在运行作业的CPU数,扩大可供回填(backfill)的CPU空间,使得Backfilling算法无法回填的作业得到运行,弥补了Backfilling算法的不足,大大提高了共享内存体系结构并行计算机系统的CPU利用率。 展开更多
关键词 并行计算 作业调度 CPU利用率 backfilling算法 扩履适足
在线阅读 下载PDF
结合Backfilling和空闲资源调度的云工作流调度方法 被引量:2
9
作者 谭海中 赵丽 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第6期149-157,共9页
针对云计算中工作流的科学调度问题,提出了一种快速且有效的调度方案.首先,根据计算速度将所有的资源节点以降序方式排列;然后,调度程序通过深度优先搜索,检查任务之间的依赖关系,并根据截止期限对待执行任务进行加权排序;接着,计算每... 针对云计算中工作流的科学调度问题,提出了一种快速且有效的调度方案.首先,根据计算速度将所有的资源节点以降序方式排列;然后,调度程序通过深度优先搜索,检查任务之间的依赖关系,并根据截止期限对待执行任务进行加权排序;接着,计算每个待执行任务所使用的资源的时隙.如果当前可用资源不能满足当前任务,则采用Backfilling策略,对该任务所需资源进行预留,并跳到下一个任务执行.如果当前资源满足当前任务,则执行提出的空闲资源调度(IRS)策略,尽量安排空闲资源来执行该任务.仿真结果表明:与当前云工作流调度技术相比,本文调度策略具有更低的任务完成时间与任务执行延迟,以及更高的资源利用率. 展开更多
关键词 云计算 工作流调度 backfilling策略 空闲资源调度 任务执行延迟
在线阅读 下载PDF
基于BACKFILL的“削足适履”并行作业调度算法 被引量:1
10
作者 白树仁 付云虹 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第1期81-84,共4页
BACKFILL方法在并行作业调度时并不能有效地的利用CPU资源.在BACK-FILL的基础上,提出一种“削足适履”算法.利用CPU的空闲空间作为判断依据,扩展了可参与填充操作作业的数量,“削足适履”算法通过合理修改队列中作业的参数-CPU数量和运... BACKFILL方法在并行作业调度时并不能有效地的利用CPU资源.在BACK-FILL的基础上,提出一种“削足适履”算法.利用CPU的空闲空间作为判断依据,扩展了可参与填充操作作业的数量,“削足适履”算法通过合理修改队列中作业的参数-CPU数量和运行时间,将BACKFILL算法无法处理的作业填充到空闲的CPU空间中,弥补了BACK-FILL算法的不足,提高了并行系统作业调度CPU利用率. 展开更多
关键词 算法 系统分析 并行计算 作业调度 回填算法
在线阅读 下载PDF
基于LT-backfilling算法的集群作业调度系统 被引量:4
11
作者 张果桃 赵金雁 白中英 《计算机工程》 CAS CSCD 北大核心 2007年第21期69-71,共3页
在胖节点集群系统中,目前的reservations,backfilling等主流调度算法未能充分考虑单节点过载情况。该文在传统backfilling算法基础上,充分考虑节点当前负载,将预约、回填策略相结合,提出了一种新的LT-backfilling调度算法。设计了基于XM... 在胖节点集群系统中,目前的reservations,backfilling等主流调度算法未能充分考虑单节点过载情况。该文在传统backfilling算法基础上,充分考虑节点当前负载,将预约、回填策略相结合,提出了一种新的LT-backfilling调度算法。设计了基于XML业务流程模板的二层作业调度系统,用户不仅可以提交单个作业,而且可以提交一组具有数据相关性的作业流,使得作业调度系统更加实用化。 展开更多
关键词 LT-backfilling 负载均衡 作业调度 XML 作业流
在线阅读 下载PDF
Stability and control of room mining coal pillars-taking room mining coal pillars of solid backfill recovery as an example 被引量:16
12
作者 ZHANG Ji-xiong HUANG Peng +2 位作者 ZHANG Qiang LI Meng CHEN Zhi-wei 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第5期1121-1132,共12页
The stability of room mining coal pillars during their secondary mining for recovering coal was analyzed. An analysis was performed for the damage and instability mechanism of coal pillars recovered by the caving mini... The stability of room mining coal pillars during their secondary mining for recovering coal was analyzed. An analysis was performed for the damage and instability mechanism of coal pillars recovered by the caving mining method. During the damage progression of a single room coal pillar, the shape of the stress distribution in the pillar transformed from the initial stable saddle shape to the final arch-shaped distribution of critical instability. By combining the shapes of stress distribution in the coal pillars with the ultimate strength theory, the safe-stress value of coal pillar was obtained as 11.8 MPa. The mechanism of instability of coal pillar groups recovered by the caving mining method was explained by the domino effect. Since the room coal pillars mined and recovered by the traditional caving mining method were significantly influenced by the secondary mining during recovery, the coal pillars would go through a chain-type instability failure. Because of this limitation, the method of solid backfilling was proposed for mining and recovering room coal pillars, thus changing the transfer mechanism of stress caused by the secondary mining(recovery) of coal pillars. The mechanical model of the stope in the case of backfilling and recovering room coal pillars was built. The peak stress values inside coal pillars varied with the variance of backfilling ratio when the working face was advanced by 150 m. Furthermore, when the critical backfilling ratio was 80.6%, the instability failure of coal pillars would not occur during the solid backfill mining process. By taking Bandingliang Coal Mine as an example, the coal pillars' stability of stope under this backfilling ratio was studied, and a project scheme was designed. 展开更多
关键词 ROOM MINING stability of COAL PILLARS COAL MINING of SOLID backfill ultimate strength instability failure
在线阅读 下载PDF
Coupled effect of cement hydration and temperature on hydraulic behavior of cemented tailings backfill 被引量:12
13
作者 吴迪 蔡嗣经 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1956-1964,共9页
Cemented tailings backfill(CTB) is made by mixing cement, tailings and water together, thus cement hydration and water seepage flow are the two crucial factors affecting the quality of CTB. Cement hydration process ca... Cemented tailings backfill(CTB) is made by mixing cement, tailings and water together, thus cement hydration and water seepage flow are the two crucial factors affecting the quality of CTB. Cement hydration process can release significant amount of heat to raise the temperature of CTB and in turn increase the rate of cement hydration. Meanwhile, the progress of cement hydration consumes water and produces hydration products to change the pore structures within CTB, which further influences the hydraulic behavior of CTB. In order to understand the hydraulic behavior of CTB, a numerical model was developed by coupling the hydraulic,thermal and hydration equations. This model was then implemented into COMSOL Multiphysics to simulate the evolutions of temperature and water seepage flow within CTB versus curing time. The predicted outcomes were compared with correspondent experimental results, proving the validity and availability of this model. By taking advantage of the validated model, effects of various initial CTB and curing temperatures, cement content, and CTB's geometric shapes on the hydraulic behavior of CTB were demonstrated numerically. The presented conclusions can contribute to preparing more environmentally friendly CTB structures. 展开更多
关键词 cemented tailings backfill HYDRATION water seepage flow pore water pressure coupled model
在线阅读 下载PDF
Structure optimal design research on backfill hydraulic support 被引量:9
14
作者 ZHANG Qiang ZHANG Ji-xiong +2 位作者 QI Wen-yue ZHOU Nan TAI Yang 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第7期1637-1646,共10页
Backfill hydraulic support is the key equipment in achieving coal mining and solid backfilling simultaneously in solid backfill mining technology.Based on the summary and analysis of main types,basic structural proper... Backfill hydraulic support is the key equipment in achieving coal mining and solid backfilling simultaneously in solid backfill mining technology.Based on the summary and analysis of main types,basic structural properties and filed application of backfill hydraulic support,this work has firstly proposed the basic principle of backfill hydraulic support optimization design and provided the method of optimal design of key structural components,like four-bar linkage,rear canopy and tamping structure;the method is further elaborated as changing hinging position of upper bar to optimize four-bar linkage,by lengthening or shortening the rear canopy to optimize length ratio of canopy;and by changing length and hinging position of tamping structure as well as suspension height of backfill scrape conveyor to realize optimization of tamping structure.On this basis,the process of optimal design of backfill hydraulic support is built.The optimal design case of ZC5200/14.5/30 six columns-four bar linkage used in 7203 W workface of Zhaizhen Coal Mine shows that the backfill properties like horizontal roof gap,vertical horizontal gap,tamping angle and tamping head gap are improved obviously through optimizing four-bar linkage,canopy length and tamping structure according to the optimal design method proposed in this work. 展开更多
关键词 backfill hydraulic support STRUCTURE optimal design four-bar LINKAGE REAR CANOPY TAMPING STRUCTURE
在线阅读 下载PDF
Mining pressure monitoring and analysis in fully mechanized backfilling coal mining face-A case study in Zhai Zhen Coal Mine 被引量:15
15
作者 张强 张吉雄 +2 位作者 康涛 孙强 李伟康 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1965-1972,共8页
Fully mechanized solid backfill mining(FMSBM) technology adopts dense backfill body to support the roof. Based on the distinguishing characteristics and mine pressure control principle in this technology, the basic pr... Fully mechanized solid backfill mining(FMSBM) technology adopts dense backfill body to support the roof. Based on the distinguishing characteristics and mine pressure control principle in this technology, the basic principles and methods for mining pressure monitoring were analyzed and established. And the characteristics of overburden strata movement were analyzed by monitoring the support resistance of hydraulic support, the dynamic subsidence of immediate roof, the stress of backfill body, the front abutment pressure, and the mass ratio of cut coal to backfilled materials. On-site strata behavior measurements of 7403 W solid backfilling working face in Zhai Zhen Coal Mine show that the backfill body can effectively support the overburden load, obviously control the overburden strata movement, and weaken the strata behaviors distinctly. Specific performances are as follows. The support resistance decreases obviously; the dynamic subsidence of immediate roof keeps consistent to the variation of backfill body stress, and tends to be stable after the face retreating to 120-150 m away from the cut. The peak value of front abutment pressure arises at 5-12 m before the operating face, and mass ratio is greater than the designed value of 1.15, which effectively ensures the control of strata movement. The research results are bases for intensively studying basic theories of solid backfill mining strata behaviors and its control, and provide theoretical guidance for engineering design in FMSBM. 展开更多
关键词 fully mechanized solid backfill mining(FMSBM) strata movement strata behavior mining pressure monitoring
在线阅读 下载PDF
Features of pipe transportation of paste-like backfilling in deep mine 被引量:11
16
作者 王新民 赵建文 +1 位作者 薛俊华 余国锋 《Journal of Central South University》 SCIE EI CAS 2011年第5期1413-1417,共5页
Based on the pipe transportation of paste-like backfilling system of a certain deep coal mine,its dynamics process was simulated and analyzed.A two-dimensional dynamic model of extraordinary deep and lone pipe was bui... Based on the pipe transportation of paste-like backfilling system of a certain deep coal mine,its dynamics process was simulated and analyzed.A two-dimensional dynamic model of extraordinary deep and lone pipe was built by GAMBIT,on the basis of which the simulation was done by implicit solver of FLUENT 2ddp.The results show that hydraulic loss of pipe transportation is less than the pressure produced by gravity,which means the backfilling material can flow by itself.When the inlet velocity is 3.2 m/s,the maximum velocity of 4.10 m/s is at the elbow and the maximum velocity in the horizontal pipe is 3.91 m/s,which can both meet the stability requirement.The results of the simulation are proved to be reliable by the residual monitor plotting of related parameter,so it can be concluded that the system of pipe transportation is safe. 展开更多
关键词 backfillING deep mine paste-like slurry pipe transportation flow
在线阅读 下载PDF
Cemented backfill technology based on phosphorous gypsum 被引量:5
17
作者 王新民 赵彬 张钦礼 《Journal of Central South University》 SCIE EI CAS 2009年第2期285-291,共7页
Physical-chemical properties of phosphorous gypsum, proportion and cemented mechanism of slurry with gypsum as aggregate were studied to remove the harms of gypsum pile, combining with difficult problems of excessive ... Physical-chemical properties of phosphorous gypsum, proportion and cemented mechanism of slurry with gypsum as aggregate were studied to remove the harms of gypsum pile, combining with difficult problems of excessive mined-out gobs, enormous ore body under roadway and low recovery ratio of Yongshaba Mine, Kaiyang Phosphor Mine Group, Guizhou Province, China. An appropriate backfill system and craflwork were designed, using shattering milling method to crush gypsum, double-axles mixing and strong activation mixing way to mix slurry, cemented slurry and mullock backfill alternately process. The results show that gypsum is fit for backfilling afterwards by adding fly ash, though it is not an ideal aggregate for fine granule and coagulate retardation. The suggested dosage (the mass ratio of cement to fly ash to gypsum) is 1:1:6-1:1:8 with mass fraction of solid materials 60%-63%. Slurry is transported in suspend state with non-plastic strength, and then in concretion state after backfilling. The application to mine shows the technology is feasible, and gypsum utilization ratio is up to 100%. Transportation and backfill effect is very good for paste-like slurry and drenching cemented slurry into mullock, and the compressive strength and recovery ratio are 2.0 MPa and 82.6%, respectively, with the maximum subsidence of surface only 1.307 mm. Furthermore, the investment of system is about 7 × 10^6 yuan (RMB), only 1/10 of that of traditional paste backfill system. 展开更多
关键词 phosphorous gypsum self-flowing transportation cemented backfill cemented mechanism backfill system and craftwork
在线阅读 下载PDF
Effects of temperature and age on physico-mechanical properties of cemented gravel sand backfills 被引量:8
18
作者 JIANG Fei-fei ZHOU Hui +2 位作者 SHENG Jia KOU Yong-yuan LI Xiang-dong 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第10期2999-3012,共14页
Cemented backfill used in deep mines would inevitably be exposed to the ambient temperature of 20−60℃in the next few decades.In this paper,two types of cemented gravel sand backfills,cemented rod-mill sand backfill(C... Cemented backfill used in deep mines would inevitably be exposed to the ambient temperature of 20−60℃in the next few decades.In this paper,two types of cemented gravel sand backfills,cemented rod-mill sand backfill(CRB)and cemented gobi sand backfill(CGB),were prepared and cured at various temperatures(20,40,60℃)and ages(3,7,28 d),and the effects of temperature and age on the physico-mechanical properties of CRB and CGB were investigated based on laboratory tests.Results show that:1)the effects of temperature and age on the physico-mechanical properties of backfills mainly depend on the amount of hydration products and the refinement of cementation structures.The temperature has a more significant effect on thermal expansibility and ultrasonic performance at early ages.2)The facilitating effect of temperature and age on the compressive strength of CGB is higher than that on CRB.With the increase of temperature,the compressive failure modes changed from X-conjugate shear failure to tensile failure,and the integrity of specimens was significantly improved.3)Similarly,the shear performance of CGB is generally better than that of CRB.The temperature has a weaker effect on shear strength than age,but the shear deformation and shear plane morphology are closely related to temperature. 展开更多
关键词 cemented backfill gravel sand TEMPERATURE physico-mechanical properties deformation characteristics
在线阅读 下载PDF
Quantitative investigation on micro-parameters of cemented paste backfill and its sensitivity analysis 被引量:12
19
作者 LIU Lang ZHOU Peng +2 位作者 FENG Yan ZHANG Bo SONG Ki-il 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第1期267-276,共10页
The mechanical properties of cemented paste backfill(CPB) depend heavily on its pore structural characteristics and micro-structural changes. In order to explore the variation mechanisms of macro-mechanical characteri... The mechanical properties of cemented paste backfill(CPB) depend heavily on its pore structural characteristics and micro-structural changes. In order to explore the variation mechanisms of macro-mechanical characteristics and micro-structure of CPB. CPB specimens with different mass concentrations prepared from the full tailings of Xianglushan Tungsten Ore were micro-tests. Moreover, acquired pore digital images were processed by using the pores(particles) and cracks analysis system(PCAS), and a sensitivity analysis was performed. The results show that as the mass concentration of CPB increases from 70% to 78%, the porosity, the average pore area and the number of pores drop overall, leading to a decline in the pores opening degree and enhancing the mechanical characteristics. As the mass concentration of CPB increases, the trend of fractal dimension, probability entropy and roundness is reduced, constant and increased, which can result in an enhancement of the uniformity, an unchanged directionality and more round pores. According to the definition of sensitivity, the sensitivities of various micro-parameters were calculated and can be ranked as porosity > average pore area > number of pores > roundness > fractal dimension > probability entropy. 展开更多
关键词 cemented paste backfill mass concentration sensitivity analysis micro-parameters
在线阅读 下载PDF
Backfill support's backfill and operation properties and evaluation 被引量:4
20
作者 ZHANG Qiang DU Chang-long +3 位作者 ZHANG Ji-xiong WANG Jia-qi LI Meng QI Wen-yue 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第6期1524-1534,共11页
To ensure compacted backfilling, it is essential to ensure the reliability of the performance of a solid backfill support, key equipment for integrating backfilling and mining. To evaluate the backfilling performance ... To ensure compacted backfilling, it is essential to ensure the reliability of the performance of a solid backfill support, key equipment for integrating backfilling and mining. To evaluate the backfilling performance of a backfill support, the concept of backfill and operation properties is proposed in this study. Moreover, it is elaborated in terms of five aspects, namely, structural property, supporting property, tamping property, mechanical response property, and geological adaptation property, which are specifically reflected by 14 indexes including the supporting intensity and vertical roof gap. Seven separate evaluation indexes are selected to build a backfill and operation properties based system for evaluating the design schemes of the backfill support via a multi-index comprehensive evaluation method; then, the evaluation method and process together with measures to control the backfill and operation properties are proposed. By using this system, 11 schemes for optimizing the ZC5200/14.5/3 backfill support at Zhaizhen Coal Mine are evaluated, and scheme #10 is found to show superior vertical roof gap and other backfill and operation properties, thus demonstrating the reasonability of the evaluation system. On this basis, the backfill support research framework of designing initial scheme, optimizing design scheme, selecting the best evaluation indexes, evaluating optimizing scheme, and evaluating operation properties is built; this should serve as an important reference for further studies on the roof controlling performance of a backfill support. 展开更多
关键词 backfilling coal mining backfill and operation properties tamping force vertical roof gap horizontal roofgap evaluation method
在线阅读 下载PDF
上一页 1 2 82 下一页 到第
使用帮助 返回顶部