Injection of water to enhance oil production is commonplace, and improvements in understanding the process are economically important. This study examines predictive models of the injection-to-production ratio. First...Injection of water to enhance oil production is commonplace, and improvements in understanding the process are economically important. This study examines predictive models of the injection-to-production ratio. Firstly, the error between the fitting and actual injection-production ratio is calculated with such methods as the injection-production ratio and water-oil ratio method, the material balance method, the multiple regression method, the gray theory GM (1,1) model and the back-propogation (BP) neural network method by computer applications in this paper. The relative average errors calculated are respectively 1.67%, 1.08%, 19.2%, 1.38% and 0.88%. Secondly, the reasons for the errors from different prediction methods are analyzed theoretically, indicating that the prediction precision of the BP neural network method is high, and that it has a better self-adaptability, so that it can reflect the internal relationship between the injection-production ratio and the influencing factors. Therefore, the BP neural network method is suitable to the prediction of injection-production ratio.展开更多
This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance system...This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots.展开更多
Human body posture recognition has attracted considerable attention in recent years in wireless body area networks(WBAN). In order to precisely recognize human body posture,many recognition algorithms have been propos...Human body posture recognition has attracted considerable attention in recent years in wireless body area networks(WBAN). In order to precisely recognize human body posture,many recognition algorithms have been proposed.However, the recognition rate is relatively low. In this paper, we apply back propagation(BP) neural network as a classifier to recognizing human body posture, where signals are collected from VG350 acceleration sensor and a posture signal collection system based on WBAN is designed. Human body signal vector magnitude(SVM) and tri-axial acceleration sensor data are used to describe the human body postures. We are able to recognize 4postures: Walk, Run, Squat and Sit. Our posture recognition rate is up to 91.67%. Furthermore, we find an implied relationship between hidden layer neurons and the posture recognition rate. The proposed human body posture recognition algorithm lays the foundation for the subsequent applications.展开更多
The construction of a pest detection algorithm is an important step to couple"ground-space"characteristics,which is also the basis for rapid and accurate monitoring and detection of pest damage.In four exper...The construction of a pest detection algorithm is an important step to couple"ground-space"characteristics,which is also the basis for rapid and accurate monitoring and detection of pest damage.In four experimental areas in Sanming City,Jiangle County,Sha County and Yanping District in Fujian Province,sample data on pest damage in 182 sets of Dendrolimus punctatus were collected.The data were randomly divided into a training set and testing set,and five duplicate tests and one eliminating-indicator test were done.Based on the characterization analysis of the host for D.punctatus damage,seven characteristic indicators of ground and remote sensing including leaf area index,standard error of leaf area index(SEL)of pine forest,normalized difference vegetation index(NDVI),wetness from tasseled cap transformation(WET),green band(B2),red band(B3),near-infrared band(B4)of remote sensing image are obtained to construct BP neural networks and random forest models of pest levels.The detection results of these two algorithms were comprehensively compared from the aspects of detection precision,kappa coefficient,receiver operating characteristic curve,and a paired t test.The results showed that the seven indicators all were responsive to pest damage,and NDVI was relatively weak;the average pest damage detection precision of six tests by BP neural networks was 77.29%,the kappa coefficient was 0.6869 and after the RF algorithm,the respective values were 79.30%and 0.7151,showing that the latter is more optimized,but there was no significant difference(p>0.05);the detection precision,kappa coefficient and AUC of the RF algorithm was higher than the BP neural networks for three pest levels(no damage,moderate damage and severe damage).The detection precision and AUC of BP neural networks were a little higher for mild damage,but the difference was not significant(p>0.05)except for the kappa coefficient for the no damage level(p<0.05).An"over-fitting"phenomenon tends to occur in BP neural networks,while RF method is more robust,providing a detection effect that is better than the BP neural networks.Thus,the application of the random forest algorithm for pest damage and multilevel dispersed variables is thus feasible and suggests that attention to the proportionality of sample data from various categories is needed when collecting data.展开更多
The back propagation (BP)-based artificial neural nets (ANN) can identify complicated relationships among dissolved gas contents in transformer oil and corresponding fault types, using the highly nonlinear mapping nat...The back propagation (BP)-based artificial neural nets (ANN) can identify complicated relationships among dissolved gas contents in transformer oil and corresponding fault types, using the highly nonlinear mapping nature of the neural nets. An efficient BP-ALM (BP with Adaptive Learning Rate and Momentum coefficient) algorithm is proposed to reduce the training time and avoid being trapped into local minima, where the learning rate and the momentum coefficient are altered at iterations. We developed a system of transformer fault diagnosis based on Dissolved Gases Analysis (DGA) with a BP-ALM algorithm. Training patterns were selected from the results of a Refined Three-Ratio method (RTR). Test results show that the system has a better ability of quick learning and global convergence than other methods and a superior performance in fault diagnosis compared to convectional BP-based neural networks and RTR.展开更多
To reduce the bandwidth and storage resources of image information in communication transmission, and improve the secure communication of information. In this paper, an image compression and encryption algorithm based...To reduce the bandwidth and storage resources of image information in communication transmission, and improve the secure communication of information. In this paper, an image compression and encryption algorithm based on fractional-order memristive hyperchaotic system and BP neural network is proposed. In this algorithm, the image pixel values are compressed by BP neural network, the chaotic sequences of the fractional-order memristive hyperchaotic system are used to diffuse the pixel values. The experimental simulation results indicate that the proposed algorithm not only can effectively compress and encrypt image, but also have better security features. Therefore, this work provides theoretical guidance and experimental basis for the safe transmission and storage of image information in practical communication.展开更多
To investigate wavelength response of the no core fiber(NCF)interference spectrum to concentration,a three-layer back propagation(BP)neural network model was established to optimize the concentration sensing data....To investigate wavelength response of the no core fiber(NCF)interference spectrum to concentration,a three-layer back propagation(BP)neural network model was established to optimize the concentration sensing data.In this method,the measured wavelength and the corresponding concentration were trained by a BP neural network,so that the accuracy of the measurement system was optimized.The wavelength was used as the training set and got into the input layer of the three layer BP network model which is used as the input value of the network,and the corresponding actual concentration value was used as the output value of the network,and the optimal network structure was trained.This paper discovers a preferable correlation between the predicted value and the actual value,where the former is approximately equal to the latter.The correlation coefficients of the measured and predicted values for a sucrose concentration were 1.000 89 and 1.003 94;similarly,correlations of0.999 51 and 1.018 8 for a glucose concentration were observed.The results demonstrate that the BP neural network can improve the prediction accuracy of the nonlinear relationship between the interference spectral data and the concentration in NCF sensing systems.展开更多
Firstly, the early warning index system of coal mine safety production was given from four aspects as per- sonnel, environment, equipment and management. Then, improvement measures which are additional momentum method...Firstly, the early warning index system of coal mine safety production was given from four aspects as per- sonnel, environment, equipment and management. Then, improvement measures which are additional momentum method, adaptive learning rate, particle swarm optimization algorithm, variable weight method and asynchronous learning factor, are used to optimize BP neural network models. Further, the models are applied to a comparative study on coal mine safety warning instance. Results show that the identification precision of MPSO-BP network model is higher than GBP and PSO-BP model, and MPSO- BP model can not only effectively reduce the possibility of the network falling into a local minimum point, but also has fast convergence and high precision, which will provide the scientific basis for the forewarnin~ management of coal mine safetv production.展开更多
In this paper,an intelligent control method applying on numerical virtual flight is proposed.The proposed algorithm is verified and evaluated by combining with the case of the basic finner projectile model and shows a...In this paper,an intelligent control method applying on numerical virtual flight is proposed.The proposed algorithm is verified and evaluated by combining with the case of the basic finner projectile model and shows a good application prospect.Firstly,a numerical virtual flight simulation model based on overlapping dynamic mesh technology is constructed.In order to verify the accuracy of the dynamic grid technology and the calculation of unsteady flow,a numerical simulation of the basic finner projectile without control is carried out.The simulation results are in good agreement with the experiment data which shows that the algorithm used in this paper can also be used in the design and evaluation of the intelligent controller in the numerical virtual flight simulation.Secondly,combined with the real-time control requirements of aerodynamic,attitude and displacement parameters of the projectile during the flight process,the numerical simulations of the basic finner projectile’s pitch channel are carried out under the traditional PID(Proportional-Integral-Derivative)control strategy and the intelligent PID control strategy respectively.The intelligent PID controller based on BP(Back Propagation)neural network can realize online learning and self-optimization of control parameters according to the acquired real-time flight parameters.Compared with the traditional PID controller,the concerned control variable overshoot,rise time,transition time and steady state error and other performance indicators have been greatly improved,and the higher the learning efficiency or the inertia coefficient,the faster the system,the larger the overshoot,and the smaller the stability error.The intelligent control method applying on numerical virtual flight is capable of solving the complicated unsteady motion and flow with the intelligent PID control strategy and has a strong promotion to engineering application.展开更多
The appropriate fuze-warhead coordination method is important to improve the damage efficiency of air defense missiles against aircraft targets. In this paper, an adaptive fuze-warhead coordination method based on the...The appropriate fuze-warhead coordination method is important to improve the damage efficiency of air defense missiles against aircraft targets. In this paper, an adaptive fuze-warhead coordination method based on the Back Propagation Artificial Neural Network(BP-ANN) is proposed, which uses the parameters of missile-target intersection to adaptively calculate the initiation delay. The damage probabilities at different radial locations along the same shot line of a given intersection situation are calculated, so as to determine the optimal detonation position. On this basis, the BP-ANN model is used to describe the complex and highly nonlinear relationship between different intersection parameters and the corresponding optimal detonating point position. In the actual terminal engagement process, the fuze initiation delay is quickly determined by the constructed BP-ANN model combined with the missiletarget intersection parameters. The method is validated in the case of the single-shot damage probability evaluation. Comparing with other fuze-warhead coordination methods, the proposed method can produce higher single-shot damage probability under various intersection conditions, while the fuzewarhead coordination effect is less influenced by the location of the aim point.展开更多
For effectively early warning the marketing risk caused along with the varied environment, a BP neural network method was introduced on the basis of analyzing the shortcomings of the risk early warning method, and com...For effectively early warning the marketing risk caused along with the varied environment, a BP neural network method was introduced on the basis of analyzing the shortcomings of the risk early warning method, and combined with the practical conditions of dairy enterprises, the index system caused by the marketing risk was also studied. The'principal component method was used for screening the indexes, the grades and critical values of the marketing risk were determined. Through the configuration of BP network, node processing and error analysis, the early warning resuits of the marketing risk were obtained. The results indicate that BP neural network method can be effectively applied through the function approach in the marketing early warning with incomplete information and complex varied conditions.展开更多
文摘Injection of water to enhance oil production is commonplace, and improvements in understanding the process are economically important. This study examines predictive models of the injection-to-production ratio. Firstly, the error between the fitting and actual injection-production ratio is calculated with such methods as the injection-production ratio and water-oil ratio method, the material balance method, the multiple regression method, the gray theory GM (1,1) model and the back-propogation (BP) neural network method by computer applications in this paper. The relative average errors calculated are respectively 1.67%, 1.08%, 19.2%, 1.38% and 0.88%. Secondly, the reasons for the errors from different prediction methods are analyzed theoretically, indicating that the prediction precision of the BP neural network method is high, and that it has a better self-adaptability, so that it can reflect the internal relationship between the injection-production ratio and the influencing factors. Therefore, the BP neural network method is suitable to the prediction of injection-production ratio.
基金the National Natural Science Foundation of China(Grant No.12072090).
文摘This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots.
基金supported by the National Natural Science Foundation of China(No.61074165 and No.61273064)Jilin Provincial Science&Technology Department Key Scientific and Technological Project(No.20140204034GX)Jilin Province Development and Reform Commission Project(No.2015Y043)
文摘Human body posture recognition has attracted considerable attention in recent years in wireless body area networks(WBAN). In order to precisely recognize human body posture,many recognition algorithms have been proposed.However, the recognition rate is relatively low. In this paper, we apply back propagation(BP) neural network as a classifier to recognizing human body posture, where signals are collected from VG350 acceleration sensor and a posture signal collection system based on WBAN is designed. Human body signal vector magnitude(SVM) and tri-axial acceleration sensor data are used to describe the human body postures. We are able to recognize 4postures: Walk, Run, Squat and Sit. Our posture recognition rate is up to 91.67%. Furthermore, we find an implied relationship between hidden layer neurons and the posture recognition rate. The proposed human body posture recognition algorithm lays the foundation for the subsequent applications.
基金supported by the National Natural Science Foundation of China(Grant Nos.41501361,41401385,30871965)the China Postdoctoral Science Foundation(No.2018M630728)+2 种基金the Open Fund of Fujian Provincial Key Laboratory of Resources and Environment Monitoring&Sustainable Management and Utilization(No.ZD1403)the Open Fund of Fujian Mine Ecological Restoration Engineering Technology Research Center(No.KS2018005)the Scientific Research Foundation of Fuzhou University(No.XRC1345)
文摘The construction of a pest detection algorithm is an important step to couple"ground-space"characteristics,which is also the basis for rapid and accurate monitoring and detection of pest damage.In four experimental areas in Sanming City,Jiangle County,Sha County and Yanping District in Fujian Province,sample data on pest damage in 182 sets of Dendrolimus punctatus were collected.The data were randomly divided into a training set and testing set,and five duplicate tests and one eliminating-indicator test were done.Based on the characterization analysis of the host for D.punctatus damage,seven characteristic indicators of ground and remote sensing including leaf area index,standard error of leaf area index(SEL)of pine forest,normalized difference vegetation index(NDVI),wetness from tasseled cap transformation(WET),green band(B2),red band(B3),near-infrared band(B4)of remote sensing image are obtained to construct BP neural networks and random forest models of pest levels.The detection results of these two algorithms were comprehensively compared from the aspects of detection precision,kappa coefficient,receiver operating characteristic curve,and a paired t test.The results showed that the seven indicators all were responsive to pest damage,and NDVI was relatively weak;the average pest damage detection precision of six tests by BP neural networks was 77.29%,the kappa coefficient was 0.6869 and after the RF algorithm,the respective values were 79.30%and 0.7151,showing that the latter is more optimized,but there was no significant difference(p>0.05);the detection precision,kappa coefficient and AUC of the RF algorithm was higher than the BP neural networks for three pest levels(no damage,moderate damage and severe damage).The detection precision and AUC of BP neural networks were a little higher for mild damage,but the difference was not significant(p>0.05)except for the kappa coefficient for the no damage level(p<0.05).An"over-fitting"phenomenon tends to occur in BP neural networks,while RF method is more robust,providing a detection effect that is better than the BP neural networks.Thus,the application of the random forest algorithm for pest damage and multilevel dispersed variables is thus feasible and suggests that attention to the proportionality of sample data from various categories is needed when collecting data.
文摘The back propagation (BP)-based artificial neural nets (ANN) can identify complicated relationships among dissolved gas contents in transformer oil and corresponding fault types, using the highly nonlinear mapping nature of the neural nets. An efficient BP-ALM (BP with Adaptive Learning Rate and Momentum coefficient) algorithm is proposed to reduce the training time and avoid being trapped into local minima, where the learning rate and the momentum coefficient are altered at iterations. We developed a system of transformer fault diagnosis based on Dissolved Gases Analysis (DGA) with a BP-ALM algorithm. Training patterns were selected from the results of a Refined Three-Ratio method (RTR). Test results show that the system has a better ability of quick learning and global convergence than other methods and a superior performance in fault diagnosis compared to convectional BP-based neural networks and RTR.
基金the Basic Scientific Research Projects of Colleges and Universities of Liaoning Province (Grant Nos. 2017J045)Provincial Natural Science Foundation of Liaoning (Grant Nos. 20170540060)
文摘To reduce the bandwidth and storage resources of image information in communication transmission, and improve the secure communication of information. In this paper, an image compression and encryption algorithm based on fractional-order memristive hyperchaotic system and BP neural network is proposed. In this algorithm, the image pixel values are compressed by BP neural network, the chaotic sequences of the fractional-order memristive hyperchaotic system are used to diffuse the pixel values. The experimental simulation results indicate that the proposed algorithm not only can effectively compress and encrypt image, but also have better security features. Therefore, this work provides theoretical guidance and experimental basis for the safe transmission and storage of image information in practical communication.
基金Supported by the National Natural Science Foundation of China(61307122)the University Science and Technology Innovation Team Support Project of Henan Province(13IRTTHN016)the Innovative and Training Project of Post Graduate Funding from the Henan Normal University(201310476046)
文摘To investigate wavelength response of the no core fiber(NCF)interference spectrum to concentration,a three-layer back propagation(BP)neural network model was established to optimize the concentration sensing data.In this method,the measured wavelength and the corresponding concentration were trained by a BP neural network,so that the accuracy of the measurement system was optimized.The wavelength was used as the training set and got into the input layer of the three layer BP network model which is used as the input value of the network,and the corresponding actual concentration value was used as the output value of the network,and the optimal network structure was trained.This paper discovers a preferable correlation between the predicted value and the actual value,where the former is approximately equal to the latter.The correlation coefficients of the measured and predicted values for a sucrose concentration were 1.000 89 and 1.003 94;similarly,correlations of0.999 51 and 1.018 8 for a glucose concentration were observed.The results demonstrate that the BP neural network can improve the prediction accuracy of the nonlinear relationship between the interference spectral data and the concentration in NCF sensing systems.
文摘Firstly, the early warning index system of coal mine safety production was given from four aspects as per- sonnel, environment, equipment and management. Then, improvement measures which are additional momentum method, adaptive learning rate, particle swarm optimization algorithm, variable weight method and asynchronous learning factor, are used to optimize BP neural network models. Further, the models are applied to a comparative study on coal mine safety warning instance. Results show that the identification precision of MPSO-BP network model is higher than GBP and PSO-BP model, and MPSO- BP model can not only effectively reduce the possibility of the network falling into a local minimum point, but also has fast convergence and high precision, which will provide the scientific basis for the forewarnin~ management of coal mine safetv production.
文摘In this paper,an intelligent control method applying on numerical virtual flight is proposed.The proposed algorithm is verified and evaluated by combining with the case of the basic finner projectile model and shows a good application prospect.Firstly,a numerical virtual flight simulation model based on overlapping dynamic mesh technology is constructed.In order to verify the accuracy of the dynamic grid technology and the calculation of unsteady flow,a numerical simulation of the basic finner projectile without control is carried out.The simulation results are in good agreement with the experiment data which shows that the algorithm used in this paper can also be used in the design and evaluation of the intelligent controller in the numerical virtual flight simulation.Secondly,combined with the real-time control requirements of aerodynamic,attitude and displacement parameters of the projectile during the flight process,the numerical simulations of the basic finner projectile’s pitch channel are carried out under the traditional PID(Proportional-Integral-Derivative)control strategy and the intelligent PID control strategy respectively.The intelligent PID controller based on BP(Back Propagation)neural network can realize online learning and self-optimization of control parameters according to the acquired real-time flight parameters.Compared with the traditional PID controller,the concerned control variable overshoot,rise time,transition time and steady state error and other performance indicators have been greatly improved,and the higher the learning efficiency or the inertia coefficient,the faster the system,the larger the overshoot,and the smaller the stability error.The intelligent control method applying on numerical virtual flight is capable of solving the complicated unsteady motion and flow with the intelligent PID control strategy and has a strong promotion to engineering application.
文摘The appropriate fuze-warhead coordination method is important to improve the damage efficiency of air defense missiles against aircraft targets. In this paper, an adaptive fuze-warhead coordination method based on the Back Propagation Artificial Neural Network(BP-ANN) is proposed, which uses the parameters of missile-target intersection to adaptively calculate the initiation delay. The damage probabilities at different radial locations along the same shot line of a given intersection situation are calculated, so as to determine the optimal detonation position. On this basis, the BP-ANN model is used to describe the complex and highly nonlinear relationship between different intersection parameters and the corresponding optimal detonating point position. In the actual terminal engagement process, the fuze initiation delay is quickly determined by the constructed BP-ANN model combined with the missiletarget intersection parameters. The method is validated in the case of the single-shot damage probability evaluation. Comparing with other fuze-warhead coordination methods, the proposed method can produce higher single-shot damage probability under various intersection conditions, while the fuzewarhead coordination effect is less influenced by the location of the aim point.
文摘For effectively early warning the marketing risk caused along with the varied environment, a BP neural network method was introduced on the basis of analyzing the shortcomings of the risk early warning method, and combined with the practical conditions of dairy enterprises, the index system caused by the marketing risk was also studied. The'principal component method was used for screening the indexes, the grades and critical values of the marketing risk were determined. Through the configuration of BP network, node processing and error analysis, the early warning resuits of the marketing risk were obtained. The results indicate that BP neural network method can be effectively applied through the function approach in the marketing early warning with incomplete information and complex varied conditions.