期刊文献+
共找到3,973篇文章
< 1 2 199 >
每页显示 20 50 100
Metal-sensitive diaphragm fiber optic Fabry-Perot pressure sensor with temperature compensation
1
作者 WANG Hao-xing LIU Jia +6 位作者 WANG Hai-yang WANG Jun LI Yuan-hao YIN Jian-xiong WAN Shun DAI Yun-teng JIA Ping-gang 《中国光学(中英文)》 北大核心 2025年第5期1255-1265,共11页
A metal-sensitive diaphragm fiber optic pressure sensor with temperature compensation is developed for pressure monitoring in high-temperature environments,such as engine fuel systems,oil and gas wells,and aviation hy... A metal-sensitive diaphragm fiber optic pressure sensor with temperature compensation is developed for pressure monitoring in high-temperature environments,such as engine fuel systems,oil and gas wells,and aviation hydraulic systems.The sensor combines a metal-sensitive diaphragm and a sapphire wafer to form a temperature-pressure dual Fabry-Perot(FP)interference cavity.A cross-correlation signal demodulation algorithm and a temperature decoupling method are utilized to reduce the influence of temperature crosstalk on pressure measurement.Experimental results show that the maximum nonlinear error of the sensor pressure measurement is 0.75%full scale(FS)and 0.99%FS at room temperature and 300°C,respectively,in a pressure range of 0−10 MPa and 0−1.5 MPa.The sensor’s pressure measurement accuracy is 1.7%FS when using the temperature decoupling method.The sensor exhibits good static pressure characteristics,stability,and reliability,providing an effective solution for high-temperature pressure monitoring applications. 展开更多
关键词 high-temperature pressure sensor dual Fabry-Perot interference cavity temperature compensa-tion cross-correlation algorithm
在线阅读 下载PDF
基于SSA-GA-BP神经网络的城轨地下线振动源强预测模型 被引量:1
2
作者 刘庆杰 刘博亮 +3 位作者 冯青松 徐璐 罗信伟 刘文武 《铁道科学与工程学报》 北大核心 2025年第5期2355-2366,共12页
为寻求一种预测速度快、准确率高的城市轨道交通地下线振动源强预测模型,基于55个非减振轨道测试断面数据,经过数据清洗、分析和标签化后,建立了涵盖典型车型和主要线路参数取值范围的8 000多条实测数据库。分析地铁环境振动的影响因素... 为寻求一种预测速度快、准确率高的城市轨道交通地下线振动源强预测模型,基于55个非减振轨道测试断面数据,经过数据清洗、分析和标签化后,建立了涵盖典型车型和主要线路参数取值范围的8 000多条实测数据库。分析地铁环境振动的影响因素,利用斯皮尔曼相关系数得到各类影响因素与振动源强的关系强度。分别建立基于卷积神经网络(CNN)、随机森林(RF)、支持向量机(SVM)等5个机器学习模型,对比分析了不同模型对振动源强的预测效果。使用麻雀搜索算法(SSA)和遗传算法(GA)优化BP神经网络模型的结构、超参数、权重及阈值,对比SSA-GA-BP、SSA-BP、GA-BP神经网络对振动源强的预测精度。最终使用4个差异明显且未经模型学习的新断面验证SSA-GA-BP模型的泛化能力。结果表明:5种机器学习模型中BP神经网络的非线性回归拟合能力最强,验证集MAE损失为1.55 dB,决定系数为0.948;SSA-GA-BP模型对振动源强的预测精度高于SSA-BP和GA-BP,验证集MAE、MAPE和决定系数分别为1.289 dB、1.856%和0.967,有80.11%数据的平均绝对误差在2 dB以内;SSA-GA-BP模型对4个经典的新断面数据预测效果良好,4个断面汇总数据的MAE、MSE和MAPE误差值分别为1.21 dB、2.18 dB和1.67%,决定系数为0.977,有70%数据的预测误差在2 dB以内,证明了SSA-GA-BP模型有较强的泛化能力。SSA-GA-BP振源预测模型具有较好的预测精度和快速预测能力,研究可为轨道交通地下线路设计阶段的减振降噪设计提供参考。 展开更多
关键词 城市轨道交通地下线 振动源强 预测 bp神经网络 麻雀搜索算法 遗传算法
在线阅读 下载PDF
基于BP神经网络结合ERA5数据的风电功率预测 被引量:2
3
作者 王婷婷 李斯胜 +4 位作者 于伟 能锋田 李星南 杨佳琳 熊亮 《储能科学与技术》 北大核心 2025年第1期183-189,共7页
随着我国风力发电技术的不断发展和完善,风电在电力系统运行和调度的作用越来越突出。为了高效准确地预测风电功率,减少大量风电入网带来的负面影响,本文基于BP神经网络结合ERA5数据对我国北方某风电场进行风电功率预测,并采用粒子群优... 随着我国风力发电技术的不断发展和完善,风电在电力系统运行和调度的作用越来越突出。为了高效准确地预测风电功率,减少大量风电入网带来的负面影响,本文基于BP神经网络结合ERA5数据对我国北方某风电场进行风电功率预测,并采用粒子群优化(particle swarm algorithm,PSO)算法优化模型,结合平均绝对误差、均方根误差和Pearson相关系数分析风电功率预测效果。结果表明,模型训练集中预测与实测风电功率变化趋势基本一致,呈现同增同减的趋势,BP模型的平均绝对误差为702.12 W,均方根误差为1000.18 W,相关系数为0.91,PSO-BP模型的平均绝对误差为700.75 W,均方根误差为995.16 W,相关系数为0.94;测试集中ERA5数据在一定程度上高估了风电功率,但整体趋势基本一致,BP模型的平均绝对误差为861.09 W,均方根误差为1150.86 W,相关系数为0.81;PSO-BP模型的平均绝对误差为829.55 W,均方根误差为1117.39 W,相关系数为0.83,模型的预测效果相对较好,PSO-BP模型相较于BP模型的预测效果均有一定程度的提高,在该区域的风电功率预测方面有较好的适用性。研究结果可为缺乏观测数据或观测数据质量不高的地区预测风电功率提供参考。 展开更多
关键词 风力发电 bp神经网络 ERA5再分析资料 粒子群优化算法 风电功率预测
在线阅读 下载PDF
改进SSA优化BP神经网络的变压器故障诊断 被引量:2
4
作者 汪繁荣 汪筠涵 江俊杰 《现代电子技术》 北大核心 2025年第4期145-150,共6页
变压器故障类型的准确诊断对保障电网的安全与稳定至关重要。针对BP神经网络与麻雀搜索算法(SSA)存在收敛缓慢和易陷入局部极值导致无法准确诊断的问题,提出将改进的麻雀搜索算法(ISSA)优化BP神经网络应用于变压器故障诊断。首先,引入... 变压器故障类型的准确诊断对保障电网的安全与稳定至关重要。针对BP神经网络与麻雀搜索算法(SSA)存在收敛缓慢和易陷入局部极值导致无法准确诊断的问题,提出将改进的麻雀搜索算法(ISSA)优化BP神经网络应用于变压器故障诊断。首先,引入非线性惯性权重和纵横交叉策略,从而提高算法的收敛速度和全局寻优能力;其次,将ISSA与传统SSA在收敛函数上进行对比分析,得到ISSA算法在迭代12次后以52%的准确率收敛,而SSA算法迭代23次后才达到25%的准确率,证明了ISSA在收敛速度和精度方面有明显提高;最后,将ISSA-BP、SSA-BP和BP诊断模型进行对比。实验结果表明,ISSA-BP模型准确率达到了97%,比SSA-BP、BP神经网络模型分别提高了4%和11%,可以认为提出的算法模型在变压器故障诊断领域具有更高的精度与良好的发展前景。 展开更多
关键词 麻雀搜索算法 bp神经网络 变压器 故障诊断 非线性惯性权重 纵横交叉策略
在线阅读 下载PDF
基于蜣螂优化BP-PID的温室自主跟随平台行走速度控制研究 被引量:1
5
作者 肖茂华 陈泰 +3 位作者 庄晓华 朱烨均 胡艺缤 王鸿翔 《农业机械学报》 北大核心 2025年第2期83-91,154,共10页
针对当前温室作业环境复杂、现有机械行走稳定性差的问题,本文提出了温室自主跟随电动平台行走速度控制方法。由于该系统存在非线性和时变性的特点,传统PID控制算法无法实现有效控制,因此提出了一种基于蜣螂(Dung beetle optimizer,DBO... 针对当前温室作业环境复杂、现有机械行走稳定性差的问题,本文提出了温室自主跟随电动平台行走速度控制方法。由于该系统存在非线性和时变性的特点,传统PID控制算法无法实现有效控制,因此提出了一种基于蜣螂(Dung beetle optimizer,DBO)优化BP神经网络PID控制算法。该算法采用DBO优化算法对BP神经网络的权值进行优化,加快了BP神经网络的自学习速率,实现对温室自主跟随电动平台行走速度的快速精确控制,提高系统的响应速度并降低超调量,最后,将本文提出的行走速度控制算法与PID控制算法、BP-PID控制算法、遗传算法(Genetic algorithm,GA)优化PID控制算法、蚁群算法(Ant colony optimization,ACO)优化PID控制算法对比。试验结果表明,当行走速度为1 m/s时,系统平均响应速度为0.11 s,调整时间为0.27 s,最大超调量为2.44%;当履带线速度大小和方向发生变化时,系统依然表现出响应速度快、超调量小且稳态过程无振荡的优点。DBO-BP-PID控制算法在控制稳定性和控制精度上表现更优,有效降低了系统时滞性和非线性影响,满足温室自主跟随电动平台行走速度控制的需求。 展开更多
关键词 温室 自主跟随电动平台 行走速度控制 蜣螂优化算法 bp-PID控制
在线阅读 下载PDF
基于GA-BP神经网络的烟叶打叶风分工艺参数优化
6
作者 田斌强 付龙 +5 位作者 唐剑宁 刘辉 夏凡 黄沙 刘莉艳 郭筠 《河南农业大学学报》 北大核心 2025年第3期508-515,共8页
【目的】获得烤烟烟叶在打叶风分中的最佳工艺参数,进一步优化叶片结构。【方法】选取打叶复烤工艺中的前5级打叶转速和第7、第8风机频率共7个因素,每个因素设3个水平开展正交试验,以正交试验结果确定较优的工艺参数组合为数据样本集构... 【目的】获得烤烟烟叶在打叶风分中的最佳工艺参数,进一步优化叶片结构。【方法】选取打叶复烤工艺中的前5级打叶转速和第7、第8风机频率共7个因素,每个因素设3个水平开展正交试验,以正交试验结果确定较优的工艺参数组合为数据样本集构建GA-BP神经网络模型,并结合NSGA-Ⅱ的方法对工艺参数进一步优化。【结果】正交试验确定较高的大中片率最佳工艺参数为:第1至5级打叶转速分别为493、471、620、798、794 r·min^(-1),第7、第8级风机频率分别为49、45 Hz,较低的碎片率和叶中含梗率的最优工艺参数为:第1至5级打叶转速分别为503、489、621、792、792 r·min^(-1),第7、第8级风机频率分别为50、46 Hz。经GA-BP神经网络模型优化后为第1至5级打叶转速分别为485、474、620、796、794 r·min^(-1),第7、第8级风机频率分别为49、46 Hz,在此条件下,大中片率提升了1.52个百分点,叶中含梗率、碎片率分别降低了0.09和0.08个百分点。【结论】在正交试验的基础上,通过GA-BP神经网络模型优化多工艺参数,叶片结构更为合理,可为提升烟叶叶片加工质量提供参考。 展开更多
关键词 叶片结构 bp神经网络 遗传算法 打叶风分 参数优化
在线阅读 下载PDF
基于WOA-BP神经网络的热式流量测量技术研究
7
作者 刘升虎 刘太逸 +3 位作者 冉建立 郭会强 邢亚敏 梁钊睿 《仪表技术与传感器》 北大核心 2025年第4期50-54,共5页
针对热式流量测量方法易受环境因素影响的问题,构建了一种WOA-BP神经网络流量预测模型,以热式传感器采样电压值及含水率测量信号作为模型输入量,以预测流量值作为输出值,进行温度补偿,利用鲸鱼群算法进行网络初值参数优化,得到优化后的... 针对热式流量测量方法易受环境因素影响的问题,构建了一种WOA-BP神经网络流量预测模型,以热式传感器采样电压值及含水率测量信号作为模型输入量,以预测流量值作为输出值,进行温度补偿,利用鲸鱼群算法进行网络初值参数优化,得到优化后的补偿模型,提高了算法的收敛速度。实验结果表明:优化后的神经网络模型在热式流量测量方法中具有较好的流量预测效果,WOA-BP网络模型R~2达到0.989,比传统BP模型的预测精确性和鲁棒性更高,在对油井产液量预测方面具有实用价值。 展开更多
关键词 鲸鱼优化算法(WOA) bp神经网络 热式流量测量方法 温度补偿
在线阅读 下载PDF
基于NSGA-Ⅱ与BP神经网络的复合材料身管结构参数优化
8
作者 孙磊 韩书永 +2 位作者 马梦蹊 王坚 刘宁 《火炮发射与控制学报》 北大核心 2025年第3期115-122,共8页
针对复合材料身管结构设计时多个性能指标设计要求,在Isight中集成BP神经网络、Solidworks参数化几何模型及Abaqus有限元仿真模型通过NSGA-Ⅱ遗传算法对多个目标进行优化。优化目标值为身管的一阶固有频率、质量以及复合材料缠绕部位处... 针对复合材料身管结构设计时多个性能指标设计要求,在Isight中集成BP神经网络、Solidworks参数化几何模型及Abaqus有限元仿真模型通过NSGA-Ⅱ遗传算法对多个目标进行优化。优化目标值为身管的一阶固有频率、质量以及复合材料缠绕部位处的身管内壁最大等效应力,复合材料身管三段复合缠绕位置处的金属内衬直径以及复合材料缠绕角度为设计变量。通过BP神经网络建立代理模型,再通过NSGA-Ⅱ遗传算法对多个目标进行优化求解,解得复合材料身管结构参数的Pareto最优解集。通过优化结果可知,采用遗传算法多目标优化生成的Pareto前沿面最优解集分散地较为均匀,优化解集的复合材料身管结构参数方案在刚度、强度和质量方面均有改善,为复合材料身管结构设计和优化提供了参考。 展开更多
关键词 复合材料 多目标结构优化 bp神经网络代理模型 NSGA-Ⅱ算法
在线阅读 下载PDF
基于BP神经网络的咸水黏度预测及其对渗流的影响
9
作者 李涛 美合日阿依·穆太力普 +2 位作者 薛福生 李延静 敬嘉珩 《油气地质与采收率》 北大核心 2025年第1期152-161,共10页
在碳中和背景下,采用CO_(2)咸水层封存技术来实现碳减排目标时,咸水黏度对储层中的CO_(2)-咸水两相渗流过程有着直接的影响。目前,基于压力影响的黏度预测方法仍有待完善。使用最小二乘法、BP神经网络和基于遗传算法的BP神经网络,将咸... 在碳中和背景下,采用CO_(2)咸水层封存技术来实现碳减排目标时,咸水黏度对储层中的CO_(2)-咸水两相渗流过程有着直接的影响。目前,基于压力影响的黏度预测方法仍有待完善。使用最小二乘法、BP神经网络和基于遗传算法的BP神经网络,将咸水黏度分别当作温度、质量摩尔浓度的二元函数以及温度、质量摩尔浓度、压力的三元函数优化了现有的计算方法,建立了考虑压力影响的黏度预测优化模型。在获得最佳的预测方式后,基于COMSOL软件的水平集方法系统分析了黏度对渗流的影响。研究结果表明,采用最小二乘法可以对现有的经验公式进行一定优化,但是效果不明显;采用二元BP神经网络可以将预测精度提高45.20%,考虑压力后采用三元BP神经网络可以将预测精度提高57.32%。因此,在实验数据充足的情况下,基于BP神经网络模型可以得到较大压力范围内可靠的咸水黏度值;由于经验公式法能够预测黏度变化趋势,在缺乏相应实验数据的情况下,可通过经验公式法获得咸水黏度值。此外,通过仿真结果可以发现,黏度会影响流体在流道的分布,进而影响流动速度,黏度比越大,出口平均速度波动越小且更快地趋于平稳;而且黏度比越大,残余水饱和度越小,越有利于驱替过程的进行,二者呈对数函数的关系。 展开更多
关键词 咸水黏度 bp神经网络 压力 渗流模拟 CO_(2)咸水层封存
在线阅读 下载PDF
基于BP神经网络的扁平钢箱梁涡振性能预测
10
作者 白桦 杨光 +2 位作者 杨鹏瑞 杨鑫 高广中 《东南大学学报(自然科学版)》 北大核心 2025年第5期1388-1398,共11页
以大跨桥梁常用的扁平钢箱梁为研究对象,通过风洞试验和数值模拟建立了扁平钢箱梁断面在不同动力特性和气动外形下的扭转涡振响应数据库。利用建立的数据库训练了BP神经网络,提出了确定最佳隐含层节点数的方法,并利用交叉验证和遗传算法... 以大跨桥梁常用的扁平钢箱梁为研究对象,通过风洞试验和数值模拟建立了扁平钢箱梁断面在不同动力特性和气动外形下的扭转涡振响应数据库。利用建立的数据库训练了BP神经网络,提出了确定最佳隐含层节点数的方法,并利用交叉验证和遗传算法对BP神经网络的初始权值及阈值进行优化,预测扁平钢箱梁断面的扭转涡振性能。结果表明,利用遗传算法优化后的BP神经网络可以有效预测扁平钢箱梁断面的涡振特性,随机抽取的2个样本预测平均相对误差为8.18%。参数分析表明,扁平钢箱梁断面的腹板角度越小,箱梁断面越趋近于流线型,扭转涡振响应越小。扁平钢箱梁断面增加风嘴后可以减小扭转涡振响应,然而风嘴角度越大,扭转涡振响应越大。 展开更多
关键词 扁平钢箱梁 涡振 bp神经网络 遗传算法 交叉验证
在线阅读 下载PDF
基于IDBO-BP算法的覆冰状态输电塔应力与位移预测模型
11
作者 王彦海 李恩阳 +3 位作者 苗红璞 石习双 李书炀 周冬阳 《燕山大学学报》 北大核心 2025年第3期207-218,共12页
输电塔受大风和覆冰的作用极易发生塔材变形、塔身倾斜甚至倒塔现象,建立极端天气下输电塔状态预测模型,可以预判塔身关键部位受力和整体倾斜的变化趋势。本文提出一种基于IDBO-BP算法的覆冰状态输电塔应力与位移预测模型,首先利用Singe... 输电塔受大风和覆冰的作用极易发生塔材变形、塔身倾斜甚至倒塔现象,建立极端天气下输电塔状态预测模型,可以预判塔身关键部位受力和整体倾斜的变化趋势。本文提出一种基于IDBO-BP算法的覆冰状态输电塔应力与位移预测模型,首先利用Singer混沌映射与可变螺旋搜索策略对蜣螂优化算法进行优化,然后利用改进的蜣螂优化算法对BP神经网络的权值和阈值进行优化,得到覆冰状态下输电塔应力与位移预测模型;其次,采用有限元仿真计算,得到不同工况下输电塔的状态响应;最后,结合预测模型与仿真结果得到覆冰状态输电塔关键部位应力和塔头位移的预测值。结果表明:文中提出的IDBO-BP较DBO-BP绝对平均误差下降了62.9%,平均相对误差下降了58.1%,均方根误差下降了60.2%,为覆冰状态下的输电塔自身杆件状态的安全性预测提供参考。 展开更多
关键词 输电塔 bp神经网络 覆冰 改进蜣螂算法
在线阅读 下载PDF
基于改进SSA-BPNN的煤层气直井井底流压预测研究
12
作者 余洋 董银涛 +3 位作者 李云波 包宇 张立侠 孙浩 《油气藏评价与开发》 北大核心 2025年第2期250-256,共7页
煤层气资源广泛应用直井开发,采用控压控水的排采制度,井底流压是排采方案设计与设备选型的重要参数,因此,煤层气直井井底流压预测具有重要的意义。为了便捷、准确地预测煤层气直井井底流压,指导煤层气井的控压排采,引入机器学习领域中... 煤层气资源广泛应用直井开发,采用控压控水的排采制度,井底流压是排采方案设计与设备选型的重要参数,因此,煤层气直井井底流压预测具有重要的意义。为了便捷、准确地预测煤层气直井井底流压,指导煤层气井的控压排采,引入机器学习领域中的反向传播神经网络(BPNN)模型,同时对麻雀搜索算法(SSA)进行改进,耦合构建基于改进麻雀搜索算法-反向传播神经网络(SSA-BPNN)的煤层气直井井底流压预测模型。选取了生产现场常规测量的5个影响井底流压的参数作为井底流压预测模型的输入参数,相对应的井底流压数值作为井底流压预测模型的输出参数。将600组实测数据划分为训练集、验证集与测试集,完成了煤层气直井井底流压预测模型的建立与校验工作。BPNN模型与改进SSA-BPNN模型的验证集平均绝对百分比误差分别为3.10%与0.53%,可以看出利用改进SSA与BPNN的耦合建模,能够解决BPNN易陷于局部最优的问题,提高了煤层气直井井底流压的预测精度。同时将改进SSA-BPNN模型与遗传算法-支持向量回归机(GA-SVR)模型和物理模型解析方法进行对比,结果显示:3种不同模型的平均绝对百分比误差分别为1.318%、4.971%、18.156%,改进SSA-BPNN模型的误差最低,且在井底流压较低时,改进SSA-BPNN模型的预测精度显著提高,展现出较高的准确性与良好的适用性。改进SSA-BPNN模型仅需5个输入参数,减少了输入与计算参数的复杂度,且无须考虑井筒内流体分布情况,可覆盖排采各阶段,在不同压力区间都有较高准确性。 展开更多
关键词 煤层气 麻雀搜索算法 神经网络 井底流压 预测模型
在线阅读 下载PDF
基于改进灰狼算法优化BP神经网络的RSS指纹定位
13
作者 刘伟 李艾龙 +1 位作者 李卓 王智豪 《电子测量技术》 北大核心 2025年第14期162-175,共14页
室内定位技术,特别是基于接收信号强度(RSSI)的指纹定位方法,因其成本低廉、设备支持广泛、易于部署、计算开销小等特点,受到了广泛关注。为了增强RSSI与实际物理距离之间的映射关系并提高测距精度,本文提出了一种基于改进灰狼优化(IGWO... 室内定位技术,特别是基于接收信号强度(RSSI)的指纹定位方法,因其成本低廉、设备支持广泛、易于部署、计算开销小等特点,受到了广泛关注。为了增强RSSI与实际物理距离之间的映射关系并提高测距精度,本文提出了一种基于改进灰狼优化(IGWO)算法与反向传播神经网络(BPNN)结合的RSSI测距算法。与遗传算法(GA)、粒子群算法(PSO)和经典灰狼优化算法(GWO)相比,改进的GWO算法在定位精度和全局搜索能力方面具有显著优势。通过实验,本文提出的IGWO算法在均方根误差RMSE上相比GWO算法、GA算法、PSO算法分别减少了21.3%、15.7%、14.6%,IGWO算法表现出了较好的定位性能,在精度和性能上均优于传统方法。 展开更多
关键词 室内定位 RSSI测距 bp神经网络 灰狼算法 粒子群算法
在线阅读 下载PDF
基于BWM+BP神经网络的在役中小跨径桥梁安全风险智能评估模型研究
14
作者 赵锐 田志强 宋宇涵 《世界桥梁》 北大核心 2025年第5期97-104,共8页
为克服传统桥梁安全风险评估过程的主观性及由于桥梁系统复杂带来的不确定性,基于桥梁检测数据,提出基于最优最劣法(BWM)+BP神经网络的在役中小跨径桥梁安全风险智能评估模型。首先,在现行桥梁检测评价规范基础上,以各结构部件的病害作... 为克服传统桥梁安全风险评估过程的主观性及由于桥梁系统复杂带来的不确定性,基于桥梁检测数据,提出基于最优最劣法(BWM)+BP神经网络的在役中小跨径桥梁安全风险智能评估模型。首先,在现行桥梁检测评价规范基础上,以各结构部件的病害作为安全风险评估体系中的底层指标,构建安全风险评估指标体系;然后,采用BWM法和德尔菲法,利用专家经验确定病害层指标权重,结合模糊综合评判法对桥梁检测样本数据进行前处理;最后,利用BP神经网络对处理后的样本进行训练,根据训练结果,分别用遗传算法(GA)和粒子群算法(PSO)对BP神经网络优化后对比,构建最优评估模型。将该评估模型应用于墩那高速新疆伊犁州某段某中桥,对其进行安全风险评估,以验证其适用性。结果表明:运用BWM+BP神经网络的在役中小跨径桥梁安全风险智能评估模型在一定程度上克服了检测报告样本中评价不准确和局限问题,同时削弱了BP神经网络训练大量样本的需求;GA优化的BP神经网络模型比PSO优化精度更佳、鲁棒性更好,准确率达96.49%;相比现行规范,运用该模型进行在役中小跨径桥梁安全风险评估,能改善病害叠加评分过低的问题,评估结果更符合实际情况。 展开更多
关键词 中小跨径桥梁 最优最劣法 bp神经网络 遗传算法 粒子群算法 智能评估模型 安全风险评估
在线阅读 下载PDF
基于SSA-BP的孔道压浆料抗压强度预测研究
15
作者 卜良桃 叶好焰 +1 位作者 杜国强 侯琦 《建筑科学与工程学报》 北大核心 2025年第3期115-125,共11页
为实现压浆料抗压强度的精准预测,引入麻雀搜索算法(SSA)优化BP神经网络的初始权重和阈值;设计并开展了表面硬度法与超声法检测试验,以108组试验数据为样本,建立了包含2节点输入层、9节点隐含层与1节点输出层的压浆料抗压强度SSA-BP神... 为实现压浆料抗压强度的精准预测,引入麻雀搜索算法(SSA)优化BP神经网络的初始权重和阈值;设计并开展了表面硬度法与超声法检测试验,以108组试验数据为样本,建立了包含2节点输入层、9节点隐含层与1节点输出层的压浆料抗压强度SSA-BP神经网络预测模型,与BP神经网络、遗传算法(GA)优化后的BP神经网络及测强公式预测结果进行对比;探讨了不同输入参数组合对SSA-BP模型预测效果的影响。结果表明:相比BP模型与GA-BP模型,SSA-BP模型的均方误差(MSE)分别降低了53.23%与26.86%,单次训练时间较GA-BP模型减少了34.40%;相比测强公式,预测值与实测值的判定系数R2从0.937提高至0.975,MSE与平均绝对误差(MAE)分别降低了19.81%与7.20%;单一输入参数的SSA-BP模型误差精度降低,但仍具备良好的泛化能力;SSA-BP模型能够较好挖掘输入、输出参数的数据信息,在拟合优度与预测精度方面比传统方法更有优势,可以准确预测压浆料抗压强度,为孔道压浆料性能预测提供了新方法。 展开更多
关键词 孔道压浆料 麻雀搜索算法 bp神经网络 抗压强度预测 超声法 表面硬度法
在线阅读 下载PDF
基于嵌套优化的GA-PSO-BP神经网络短期风功率预测方法研究 被引量:3
16
作者 刘翘楚 王杰 +3 位作者 秦文萍 张文博 陈玉梅 刘佳昕 《电网与清洁能源》 北大核心 2025年第2期138-146,共9页
短期风电功率预测对于保障电力系统稳定运行具有重要意义。针对单一BP(back propagation)神经网络预测模型难以满足风电功率的强随机波动特性,结合遗传算法(geneticalgorithm,GA)和粒子群智能算法(particleswarm optimization,PSO),提... 短期风电功率预测对于保障电力系统稳定运行具有重要意义。针对单一BP(back propagation)神经网络预测模型难以满足风电功率的强随机波动特性,结合遗传算法(geneticalgorithm,GA)和粒子群智能算法(particleswarm optimization,PSO),提出嵌套优化的GA-PSO-BP神经网络短期风电功率预测模型。建立内外双层嵌套的优化机制,内层机制中引入GA算法优化PSO算法学习因子,优化后PSO算法作为外层机制实现BP神经网络阈值和权值的优化。模拟风电数据预测结果表明,比起GA-BP、PSO-BP、长短期记忆网络(long short-term memory,LSTM)预测模型,所提嵌套优化模型在平均绝对误差(mean absolute error,MAE)、均方根误差(root mean squared error,RMSE)、决定系数R2 3个评价维度上均取得了最优值;利用山西某风电场不同月份、不同时段、不同波动特征的实际运行数据进行验证,预测结果表明MAE均小于0.02,R2均大于0.99,所提嵌套优化模型具有较高的预测精度和拟合程度。 展开更多
关键词 风电功率预测 bp神经网络 遗传算法 粒子群算法 嵌套优化
在线阅读 下载PDF
基于BP-ANN的人工渗滤系统去除总磷过程优化
17
作者 刘元坤 曹塬琪 +2 位作者 于艾鑫 李星 郭晓天 《中国环境科学》 北大核心 2025年第6期3151-3160,共10页
本文利用BBD响应面法(BBD-RSM)和反向传播人工神经网络(BP-ANN)算法对活性炭吸附总磷(TP)的过程参数(接触时间、初始浓度、温度、pH值)进行了建模和预测,并结合遗传算法(GA)对BP-ANN模型中的反应条件进行优化.结果表明,在BBD-RSM模型中,... 本文利用BBD响应面法(BBD-RSM)和反向传播人工神经网络(BP-ANN)算法对活性炭吸附总磷(TP)的过程参数(接触时间、初始浓度、温度、pH值)进行了建模和预测,并结合遗传算法(GA)对BP-ANN模型中的反应条件进行优化.结果表明,在BBD-RSM模型中,P<0.0001,可较好的对TP的去除过程进行预测,接触时间为TP去除率最显著的参数,TP吸附过程中各因素的相对影响顺序为:接触时间>pH值>温度>初始浓度.采用BP-ANN模型进行优化,最佳网络结构为4-8-1.敏感性分析表明,影响TP去除率的因素依次为接触时间(34.05%)>pH值(28.67%)>温度(19.56%)>初始浓度(17.72%).基于BP-ANN模型,采用GA优化人工渗滤系统运行条件,对TP去除过程的优化结果为:接触时间为720.53min、初始浓度为2.75mg/L、温度为30.62℃、pH为5,达到最佳去除率(99.63%).试验验证分析表明,BP-ANN-GA较BBD-RSM的预测值与实验值相比拥有较高的R 2(0.9939)和较低的RSME(1.2851),说明该模型具有更好的预测能力,能更好的描述人工快速渗滤系统对TP的去除过程. 展开更多
关键词 BBD响应面法 反向传播人工神经网络 遗传算法 总磷 人工快速渗滤系统
在线阅读 下载PDF
基于BP神经网络和NSGA-Ⅱ算法的直流电磁泵结构优化 被引量:1
18
作者 杨照林 陈观慈 +2 位作者 张文斌 杨进 陈永华 《兵器装备工程学报》 北大核心 2025年第1期182-190,共9页
为了提高直流电磁泵的压力来驱动液态金属流动进行散热,改善泵的输送效率,采用数值模拟与智能算法相结合的优化设计方法,对泵的结构参数和输入电流进行了优化。以液态金属镓铟锡合金为工质,在1.5 L/min流量工况下,利用COMSOL软件对电磁... 为了提高直流电磁泵的压力来驱动液态金属流动进行散热,改善泵的输送效率,采用数值模拟与智能算法相结合的优化设计方法,对泵的结构参数和输入电流进行了优化。以液态金属镓铟锡合金为工质,在1.5 L/min流量工况下,利用COMSOL软件对电磁泵进行了数值模拟仿真,求得了泵的静压差并将其与试验值进行了对比,验证了仿真模型的准确性。采用Box-Behnken试验设计方法进行数据采集,根据试验数据构建BP神经网络代理模型,以压力和效率最大化为优化目标,结合NSGA-Ⅱ算法进行结构优化。结果表明:在相同流量下,优化后泵的输入电流减小了20 A,更利于散热;压力和效率分别提高了2577.6 Pa和11.8%,沿程损耗降低,整体性能得到改善;对比流场分析,泵内部流动速度更均匀,流线分布更加平稳。 展开更多
关键词 直流电磁泵 压力 效率 bp神经网络 NSGA-Ⅱ
在线阅读 下载PDF
沙柳平茬刀具减磨优化——基于PSO-BP神经网络结合GA算法 被引量:2
19
作者 韩志武 刘志刚 +3 位作者 常涛涛 裴承慧 张鹏峰 张建强 《农机化研究》 北大核心 2025年第8期259-265,共7页
沙柳作为我国西北地区主要防风固沙树种,其机械化平茬更新对生态环境保护和社会经济发展具有重要意义。然而平茬圆锯片磨损严重,成为制约工作效率和平茬效果提升的主要技术瓶颈。为实现沙柳平茬圆锯片减磨性能的优化设计,通过野外平茬... 沙柳作为我国西北地区主要防风固沙树种,其机械化平茬更新对生态环境保护和社会经济发展具有重要意义。然而平茬圆锯片磨损严重,成为制约工作效率和平茬效果提升的主要技术瓶颈。为实现沙柳平茬圆锯片减磨性能的优化设计,通过野外平茬试验获取不同锯齿结构下的磨损退化量数据,基于磨损数据建立PSO(Particle Swarm Optimization)算法优化的BP(Back Propagation)神经网络模型,用于预测圆锯片的磨损量;然后,将训练好的PSO-BP神经网络模型与GA(Genetic Algorithm)算法相结合,以磨损量最小为优化目标,寻找圆锯片锯齿结构的最优参数。结果表明:所建立的模型成功实现了对圆锯片前角、后角、前刀面斜磨角等结构参数的多目标优化,优化得到的圆锯片参数使磨损量相对最小,提升了圆锯片的减磨性能。由此为进一步改善沙柳平茬圆锯片的切削及减磨损性能提供了新的设计思路,为提高沙柳平茬工作效率提供了技术支持,有利于生态环境保护和农业可持续发展。 展开更多
关键词 沙柳 平茬圆锯片 减磨优化 PSO-bp神经网络 遗传算法
在线阅读 下载PDF
基于AO-AVOA-BP神经网络模型的锂电池SOH预测 被引量:1
20
作者 李军毅 汪兴兴 +2 位作者 陈祥 陈林飞 邓业林 《电子测量技术》 北大核心 2025年第4期71-79,共9页
为提供准确可靠的锂电池健康状态预测,提出了一种基于非洲秃鹫优化算法融合天鹰优化算法优化BP神经网络的预测模型。通过对电池充电过程中的电压、电流和温度数据的分析,基于灰色关联分析验证健康因子与电池SOH的相关性,确定4个健康因... 为提供准确可靠的锂电池健康状态预测,提出了一种基于非洲秃鹫优化算法融合天鹰优化算法优化BP神经网络的预测模型。通过对电池充电过程中的电压、电流和温度数据的分析,基于灰色关联分析验证健康因子与电池SOH的相关性,确定4个健康因子作为模型的输入,结合基于AO-AVOA优化的BP神经网络模型,实现更精确的SOH预测。将提出的模型与其他优化模型对锂电池SOH进行预测,对各项指标进行对比分析,结果表明,所提出的预测模型平均绝对误差小于0.0089,均方根误差小于0.0112,平均绝对百分比误差小于1.4512%,具有精度高、泛化性强等特点,可有效用于锂电池的SOH预测。 展开更多
关键词 锂电池 健康状态 bp神经网络 非洲秃鹫优化算法 天鹰优化算法
在线阅读 下载PDF
上一页 1 2 199 下一页 到第
使用帮助 返回顶部