期刊文献+
共找到4,627篇文章
< 1 2 232 >
每页显示 20 50 100
Prediction Model of Soil Nutrients Loss Based on Artificial Neural Network
1
作者 WANG Zhi-liang,FU Qiang,LIANG Chuan (Hydroelectric College,Sichuan University) 《Journal of Northeast Agricultural University(English Edition)》 CAS 2001年第1期37-42,共6页
On the basis of Artificial Neural Network theory, a back propagation neural network with one middle layer is building in this paper, and its algorithms is also given, Using this BP network model, study the case of Mal... On the basis of Artificial Neural Network theory, a back propagation neural network with one middle layer is building in this paper, and its algorithms is also given, Using this BP network model, study the case of Malian-River basin. The results by calculating show that the solution based on BP algorithms are consis- tent with those based multiple - variables linear regression model. They also indicate that BP model in this paper is reasonable and BP algorithms are feasible. 展开更多
关键词 SOIL prediction model of Soil Nutrients Loss Based on Artificial neural network
在线阅读 下载PDF
Trajectory prediction algorithm of ballistic missile driven by data and knowledge
2
作者 Hongyan Zang Changsheng Gao +1 位作者 Yudong Hu Wuxing Jing 《Defence Technology(防务技术)》 2025年第6期187-203,共17页
Recently, high-precision trajectory prediction of ballistic missiles in the boost phase has become a research hotspot. This paper proposes a trajectory prediction algorithm driven by data and knowledge(DKTP) to solve ... Recently, high-precision trajectory prediction of ballistic missiles in the boost phase has become a research hotspot. This paper proposes a trajectory prediction algorithm driven by data and knowledge(DKTP) to solve this problem. Firstly, the complex dynamics characteristics of ballistic missile in the boost phase are analyzed in detail. Secondly, combining the missile dynamics model with the target gravity turning model, a knowledge-driven target three-dimensional turning(T3) model is derived. Then, the BP neural network is used to train the boost phase trajectory database in typical scenarios to obtain a datadriven state parameter mapping(SPM) model. On this basis, an online trajectory prediction framework driven by data and knowledge is established. Based on the SPM model, the three-dimensional turning coefficients of the target are predicted by using the current state of the target, and the state of the target at the next moment is obtained by combining the T3 model. Finally, simulation verification is carried out under various conditions. The simulation results show that the DKTP algorithm combines the advantages of data-driven and knowledge-driven, improves the interpretability of the algorithm, reduces the uncertainty, which can achieve high-precision trajectory prediction of ballistic missile in the boost phase. 展开更多
关键词 Ballistic missile Trajectory prediction The boost phase Data and knowledge driven The bp neural network
在线阅读 下载PDF
Establishment of constitutive relationship model for 2519 aluminum alloy based on BP artificial neural network 被引量:8
3
作者 林启权 彭大暑 朱远志 《Journal of Central South University of Technology》 EI 2005年第4期380-384,共5页
An isothermal compressive experiment using Gleeble 1500 thermal simulator was studied to acquire flow stress at different deformation temperatures, strains and strain rates. The artificial neural networks with the err... An isothermal compressive experiment using Gleeble 1500 thermal simulator was studied to acquire flow stress at different deformation temperatures, strains and strain rates. The artificial neural networks with the error back propagation(BP) algorithm was used to establish constitutive model of 2519 aluminum alloy based on the experiment data. The model results show that the systematical error is small(δ=3.3%) when the value of objective function is 0.2, the number of nodes in the hidden layer is 5 and the learning rate is 0.1. Flow stresses of the material under various thermodynamic conditions are predicted by the neural network model, and the predicted results correspond with the experimental results. A knowledge-based constitutive relation model is developed. 展开更多
关键词 2519 aluminum alloy bp algorithm neural network constitutive model
在线阅读 下载PDF
Nonlinear model predictive control based on hyper chaotic diagonal recurrent neural network 被引量:1
4
作者 Samira Johari Mahdi Yaghoobi Hamid RKobravi 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第1期197-208,共12页
Nonlinear model predictive controllers(NMPC)can predict the future behavior of the under-controlled system using a nonlinear predictive model.Here,an array of hyper chaotic diagonal recurrent neural network(HCDRNN)was... Nonlinear model predictive controllers(NMPC)can predict the future behavior of the under-controlled system using a nonlinear predictive model.Here,an array of hyper chaotic diagonal recurrent neural network(HCDRNN)was proposed for modeling and predicting the behavior of the under-controller nonlinear system in a moving forward window.In order to improve the convergence of the parameters of the HCDRNN to improve system’s modeling,the extent of chaos is adjusted using a logistic map in the hidden layer.A novel NMPC based on the HCDRNN array(HCDRNN-NMPC)was proposed that the control signal with the help of an improved gradient descent method was obtained.The controller was used to control a continuous stirred tank reactor(CSTR)with hard-nonlinearities and input constraints,in the presence of uncertainties including external disturbance.The results of the simulations show the superior performance of the proposed method in trajectory tracking and disturbance rejection.Parameter convergence and neglectable prediction error of the neural network(NN),guaranteed stability and high tracking performance are the most significant advantages of the proposed scheme. 展开更多
关键词 nonlinear model predictive control diagonal recurrent neural network chaos theory continuous stirred tank reactor
在线阅读 下载PDF
Building a Tax Predictive Model Based on the Cloud Neural Network
5
作者 田永青 李志 朱仲英 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2003年第3期81-86,共6页
Tax is very important to the whole country, so a scientific tax predictive model is needed. This paper introduces the theory of the cloud model. On this basis, it presents a cloud neural network, and analyzes the main... Tax is very important to the whole country, so a scientific tax predictive model is needed. This paper introduces the theory of the cloud model. On this basis, it presents a cloud neural network, and analyzes the main factors which influence the tax revenue. Then if proposes a tax predictive model based on the cloud neural network. The model combines the strongpoints of the cloud model and the neural network. The experiment and simulation results show the effectiveness of the algorithm in this paper. 展开更多
关键词 Cloud model Simplified TS cloud inference neural network Tax predictive model.
在线阅读 下载PDF
Combined Method of Chaotic Theory and Neural Networks for Water Quality Prediction
6
作者 ZHANG Shudong LI Weiguang +2 位作者 NAN Jun WANG Guangzhi ZHAO Lina 《Journal of Northeast Agricultural University(English Edition)》 CAS 2010年第1期71-76,共6页
Chaos theory was introduced for water quality, prediction, and the model of water quality prediction was established by combining phase space reconstruction theory and BP neural network forecasting method. Through the... Chaos theory was introduced for water quality, prediction, and the model of water quality prediction was established by combining phase space reconstruction theory and BP neural network forecasting method. Through the phase space reconstruction, the one-dimensional water quality time series were mapped to be multi-dimensional sequence, which enriched the spatial information of water quality change and expanded mapping region of training samples of BP neural network. Established model of combining chaos theory and BP neural network were applied to forecast turbidity time series of a certain reservoir. Contrast to BP neural network method, the relative error and the mean squared error of the combined method had all varying degrees of lower. Results indicated the neural network model with chaos theory had the higher prediction accuracy, at the same time, it had better fault-tolerant capability and generalization performance . 展开更多
关键词 water quality prediction bp neural network chaotic time series
在线阅读 下载PDF
Application of neural network to prediction of plate finish cooling temperature
7
作者 王丙兴 张殿华 +3 位作者 王君 于明 周娜 曹光明 《Journal of Central South University of Technology》 EI 2008年第1期136-140,共5页
To improve the deficiency of the control system of finish cooling temperature (FCT), a new model developed from a combination of a multilayer perception neural network as the self-learning system and traditional mathe... To improve the deficiency of the control system of finish cooling temperature (FCT), a new model developed from a combination of a multilayer perception neural network as the self-learning system and traditional mathematical model were brought forward to predict the plate FCT. The relationship between the self-learning factor of heat transfer coefficient and its influencing parameters such as plate thickness, start cooling temperature, was investigated. Simulative calculation indicates that the deficiency of FCT control system is overcome completely, the accuracy of FCT is obviously improved and the difference between the calculated and target FCT is controlled between -15 ℃ and 15 ℃. 展开更多
关键词 PLATE heat transfer coefficient mathematical model back propagation (bp neural network
在线阅读 下载PDF
特征融合与BP神经网络结合的刀具磨损预测 被引量:1
8
作者 郭宏 徐延 +1 位作者 伊亚聪 胡孔耀 《机械设计与制造》 北大核心 2025年第1期108-111,116,共5页
通过监测刀具磨损情况,能够有效应对生产加工中的意外状况。为了精确监测刀具的磨损状态,提出了一种多传感器特征融合及BP神经网络结合的刀具磨损预测方法。首先对工业加工中采集到的切削力、振动、声发射信号进行小波阈值去噪,然后在... 通过监测刀具磨损情况,能够有效应对生产加工中的意外状况。为了精确监测刀具的磨损状态,提出了一种多传感器特征融合及BP神经网络结合的刀具磨损预测方法。首先对工业加工中采集到的切削力、振动、声发射信号进行小波阈值去噪,然后在时域、频域和时频域内分析并提取特征,再将融合后的各类传感器特征使用Pearson相关系数和主成分分析(PCA)实现数据降维,最后将降维后的融合特征输入搭建好的BP神经网络,通过非线性仿真分析,从而实现刀具磨损量的预测。案例验证表明:与单一传感器预测相比,提出的多传感器特征融合的刀具磨损预测方法误差最小,且决定系数R2达到0.993。 展开更多
关键词 传感器 特征提取 小波去噪 PCA bp神经网络 磨损预测
在线阅读 下载PDF
基于BP神经网络结合ERA5数据的风电功率预测 被引量:1
9
作者 王婷婷 李斯胜 +4 位作者 于伟 能锋田 李星南 杨佳琳 熊亮 《储能科学与技术》 北大核心 2025年第1期183-189,共7页
随着我国风力发电技术的不断发展和完善,风电在电力系统运行和调度的作用越来越突出。为了高效准确地预测风电功率,减少大量风电入网带来的负面影响,本文基于BP神经网络结合ERA5数据对我国北方某风电场进行风电功率预测,并采用粒子群优... 随着我国风力发电技术的不断发展和完善,风电在电力系统运行和调度的作用越来越突出。为了高效准确地预测风电功率,减少大量风电入网带来的负面影响,本文基于BP神经网络结合ERA5数据对我国北方某风电场进行风电功率预测,并采用粒子群优化(particle swarm algorithm,PSO)算法优化模型,结合平均绝对误差、均方根误差和Pearson相关系数分析风电功率预测效果。结果表明,模型训练集中预测与实测风电功率变化趋势基本一致,呈现同增同减的趋势,BP模型的平均绝对误差为702.12 W,均方根误差为1000.18 W,相关系数为0.91,PSO-BP模型的平均绝对误差为700.75 W,均方根误差为995.16 W,相关系数为0.94;测试集中ERA5数据在一定程度上高估了风电功率,但整体趋势基本一致,BP模型的平均绝对误差为861.09 W,均方根误差为1150.86 W,相关系数为0.81;PSO-BP模型的平均绝对误差为829.55 W,均方根误差为1117.39 W,相关系数为0.83,模型的预测效果相对较好,PSO-BP模型相较于BP模型的预测效果均有一定程度的提高,在该区域的风电功率预测方面有较好的适用性。研究结果可为缺乏观测数据或观测数据质量不高的地区预测风电功率提供参考。 展开更多
关键词 风力发电 bp神经网络 ERA5再分析资料 粒子群优化算法 风电功率预测
在线阅读 下载PDF
基于PCA-BPNN的桥梁爆炸荷载时程预测
10
作者 杜晓庆 何益平 +2 位作者 邱涛 程帅 张德志 《爆炸与冲击》 北大核心 2025年第3期77-91,共15页
人工智能方法是预测爆炸荷载的新手段,但现有方法主要用于预测爆炸冲击波的超压峰值或冲量,而用于预测反射超压时程的研究不多。针对这一问题,以平面冲击波绕射桥梁主梁为对象,提出了一种基于主成分分析(principal components analysis,... 人工智能方法是预测爆炸荷载的新手段,但现有方法主要用于预测爆炸冲击波的超压峰值或冲量,而用于预测反射超压时程的研究不多。针对这一问题,以平面冲击波绕射桥梁主梁为对象,提出了一种基于主成分分析(principal components analysis,PCA)和误差反向传播神经网络(backpropagation neural network,BPNN)的桥梁爆炸冲击波反射超压时程预测模型。该预测模型利用PCA降维处理时程数据,基于多任务学习的BPNN算法,提出了考虑超压峰值和冲量峰值影响的损失函数,使模型能有效预测不同入射超压下的桥梁冲击波荷载时程。通过分析多任务学习模型、多输入单输出模型和多输入多输出模型等3种BPNN模型,发现多任务学习模型的预测精度最高,而多输入多输出模型难以有效适应当前预测任务需求。采用多任务学习模型预测得到的桥梁表面各测点位置的反射超压时程、超压峰值精度较高,决定系数R2分别为0.792和0.987,作用在箱梁上的合力时程和扭矩时程预测值也与数值模拟值较为吻合。同时,该模型对内插值预测的表现优于外推值预测,但其在预测外推值方面同样展现出了一定的能力。 展开更多
关键词 爆炸荷载预测 反射超压时程 误差反向传播神经网络 主成分分析 多任务学习
在线阅读 下载PDF
基于BP神经网络的路堑下穿致高铁桥墩位移的预测
11
作者 宋旭明 陈松 +2 位作者 唐冕 孙凯 程丽娟 《中南大学学报(自然科学版)》 北大核心 2025年第6期2539-2549,共11页
依托某新建路堑工程,建立土体-桥梁三维数值模型,采用正交试验法分析高铁桥梁附加位移的参数敏感性,利用拉丁超立方抽样方法,通过神经网络(backpropagation neural network)拟合墩顶附加位移与主要影响因素的隐式函数关系,结合蒙特卡洛... 依托某新建路堑工程,建立土体-桥梁三维数值模型,采用正交试验法分析高铁桥梁附加位移的参数敏感性,利用拉丁超立方抽样方法,通过神经网络(backpropagation neural network)拟合墩顶附加位移与主要影响因素的隐式函数关系,结合蒙特卡洛法,对参数进行1×10^(6)次抽样计算,得到墩顶附加位移的超限概率。研究结果表明:浅层土体力学参数对墩顶纵向位移的影响较大,开挖深度对墩顶纵向位移的影响最显著;最优BP神经网络模型预测的墩顶附加位移与有限元计算值的均方误差为4.345×10^(-4),最大相对误差为5.1%,表明最优BP神经网络模型可代替有限元进行快速估算;当开挖深度在2 m以内时,背景工程墩顶纵向附加位移基本不会超限,当开挖深度为3 m时,超限概率达40%,建议开挖前采用适当的支护措施以确保结构安全。 展开更多
关键词 路堑开挖 敏感性分析 随机响应面 bp神经网络 位移预测 可靠度
在线阅读 下载PDF
基于SSA-GA-BP神经网络的城轨地下线振动源强预测模型
12
作者 刘庆杰 刘博亮 +3 位作者 冯青松 徐璐 罗信伟 刘文武 《铁道科学与工程学报》 北大核心 2025年第5期2355-2366,共12页
为寻求一种预测速度快、准确率高的城市轨道交通地下线振动源强预测模型,基于55个非减振轨道测试断面数据,经过数据清洗、分析和标签化后,建立了涵盖典型车型和主要线路参数取值范围的8 000多条实测数据库。分析地铁环境振动的影响因素... 为寻求一种预测速度快、准确率高的城市轨道交通地下线振动源强预测模型,基于55个非减振轨道测试断面数据,经过数据清洗、分析和标签化后,建立了涵盖典型车型和主要线路参数取值范围的8 000多条实测数据库。分析地铁环境振动的影响因素,利用斯皮尔曼相关系数得到各类影响因素与振动源强的关系强度。分别建立基于卷积神经网络(CNN)、随机森林(RF)、支持向量机(SVM)等5个机器学习模型,对比分析了不同模型对振动源强的预测效果。使用麻雀搜索算法(SSA)和遗传算法(GA)优化BP神经网络模型的结构、超参数、权重及阈值,对比SSA-GA-BP、SSA-BP、GA-BP神经网络对振动源强的预测精度。最终使用4个差异明显且未经模型学习的新断面验证SSA-GA-BP模型的泛化能力。结果表明:5种机器学习模型中BP神经网络的非线性回归拟合能力最强,验证集MAE损失为1.55 dB,决定系数为0.948;SSA-GA-BP模型对振动源强的预测精度高于SSA-BP和GA-BP,验证集MAE、MAPE和决定系数分别为1.289 dB、1.856%和0.967,有80.11%数据的平均绝对误差在2 dB以内;SSA-GA-BP模型对4个经典的新断面数据预测效果良好,4个断面汇总数据的MAE、MSE和MAPE误差值分别为1.21 dB、2.18 dB和1.67%,决定系数为0.977,有70%数据的预测误差在2 dB以内,证明了SSA-GA-BP模型有较强的泛化能力。SSA-GA-BP振源预测模型具有较好的预测精度和快速预测能力,研究可为轨道交通地下线路设计阶段的减振降噪设计提供参考。 展开更多
关键词 城市轨道交通地下线 振动源强 预测 bp神经网络 麻雀搜索算法 遗传算法
在线阅读 下载PDF
基于NSGA-Ⅱ与BP神经网络的复合材料身管结构参数优化
13
作者 孙磊 韩书永 +2 位作者 马梦蹊 王坚 刘宁 《火炮发射与控制学报》 北大核心 2025年第3期115-122,共8页
针对复合材料身管结构设计时多个性能指标设计要求,在Isight中集成BP神经网络、Solidworks参数化几何模型及Abaqus有限元仿真模型通过NSGA-Ⅱ遗传算法对多个目标进行优化。优化目标值为身管的一阶固有频率、质量以及复合材料缠绕部位处... 针对复合材料身管结构设计时多个性能指标设计要求,在Isight中集成BP神经网络、Solidworks参数化几何模型及Abaqus有限元仿真模型通过NSGA-Ⅱ遗传算法对多个目标进行优化。优化目标值为身管的一阶固有频率、质量以及复合材料缠绕部位处的身管内壁最大等效应力,复合材料身管三段复合缠绕位置处的金属内衬直径以及复合材料缠绕角度为设计变量。通过BP神经网络建立代理模型,再通过NSGA-Ⅱ遗传算法对多个目标进行优化求解,解得复合材料身管结构参数的Pareto最优解集。通过优化结果可知,采用遗传算法多目标优化生成的Pareto前沿面最优解集分散地较为均匀,优化解集的复合材料身管结构参数方案在刚度、强度和质量方面均有改善,为复合材料身管结构设计和优化提供了参考。 展开更多
关键词 复合材料 多目标结构优化 bp神经网络代理模型 NSGA-Ⅱ算法
在线阅读 下载PDF
基于改进SSA-BPNN的煤层气直井井底流压预测研究
14
作者 余洋 董银涛 +3 位作者 李云波 包宇 张立侠 孙浩 《油气藏评价与开发》 北大核心 2025年第2期250-256,共7页
煤层气资源广泛应用直井开发,采用控压控水的排采制度,井底流压是排采方案设计与设备选型的重要参数,因此,煤层气直井井底流压预测具有重要的意义。为了便捷、准确地预测煤层气直井井底流压,指导煤层气井的控压排采,引入机器学习领域中... 煤层气资源广泛应用直井开发,采用控压控水的排采制度,井底流压是排采方案设计与设备选型的重要参数,因此,煤层气直井井底流压预测具有重要的意义。为了便捷、准确地预测煤层气直井井底流压,指导煤层气井的控压排采,引入机器学习领域中的反向传播神经网络(BPNN)模型,同时对麻雀搜索算法(SSA)进行改进,耦合构建基于改进麻雀搜索算法-反向传播神经网络(SSA-BPNN)的煤层气直井井底流压预测模型。选取了生产现场常规测量的5个影响井底流压的参数作为井底流压预测模型的输入参数,相对应的井底流压数值作为井底流压预测模型的输出参数。将600组实测数据划分为训练集、验证集与测试集,完成了煤层气直井井底流压预测模型的建立与校验工作。BPNN模型与改进SSA-BPNN模型的验证集平均绝对百分比误差分别为3.10%与0.53%,可以看出利用改进SSA与BPNN的耦合建模,能够解决BPNN易陷于局部最优的问题,提高了煤层气直井井底流压的预测精度。同时将改进SSA-BPNN模型与遗传算法-支持向量回归机(GA-SVR)模型和物理模型解析方法进行对比,结果显示:3种不同模型的平均绝对百分比误差分别为1.318%、4.971%、18.156%,改进SSA-BPNN模型的误差最低,且在井底流压较低时,改进SSA-BPNN模型的预测精度显著提高,展现出较高的准确性与良好的适用性。改进SSA-BPNN模型仅需5个输入参数,减少了输入与计算参数的复杂度,且无须考虑井筒内流体分布情况,可覆盖排采各阶段,在不同压力区间都有较高准确性。 展开更多
关键词 煤层气 麻雀搜索算法 神经网络 井底流压 预测模型
在线阅读 下载PDF
基于PSO-BP神经网络高速公路建设期碳排放预测方法
15
作者 赵全胜 李斐 +4 位作者 郭风爱 于建游 徐士钊 胡运朋 褚晓萌 《河北科技大学学报》 北大核心 2025年第3期312-321,共10页
为了解决高速公路建设期碳排放预测不精准的问题,提出了粒子群优化(particle swarm optimization,PSO)算法优化BP(back propagation)神经网络预测碳排放的方法。采用层次分析法(analytic hierarchy process,AHP)从工程长度层、工程建设... 为了解决高速公路建设期碳排放预测不精准的问题,提出了粒子群优化(particle swarm optimization,PSO)算法优化BP(back propagation)神经网络预测碳排放的方法。采用层次分析法(analytic hierarchy process,AHP)从工程长度层、工程建设层、能源消耗层与材料消耗层4个维度凝练出路线长度、路基长度、路面长度、隧道长度、桥涵长度、互通区长度、挖方量、填方量、柴油消耗量、水泥消耗量、碎石消耗量和钢筋消耗量12个关键指标;获取36个高速公路项目数据作为模型训练的实证样本,结合误差指标进行对比分析。结果表明,所得PSO-BP模型R2为0.974,BP模型R2为0.890,前者更接近于1;与生命周期法结果相比较,PSO-BP比未优化的BP与真实值之间偏差更小。划分的4个维度层和选择的12个关键指标使得在高速公路设计规划阶段即可预测得到建设期的碳排放,为高速公路的低碳建设提供了参考。 展开更多
关键词 道路工程其他学科 碳排放预测 PSO-bp神经网络 模型优化 因素分析
在线阅读 下载PDF
基于BP-ANN的人工渗滤系统去除总磷过程优化
16
作者 刘元坤 曹塬琪 +2 位作者 于艾鑫 李星 郭晓天 《中国环境科学》 北大核心 2025年第6期3151-3160,共10页
本文利用BBD响应面法(BBD-RSM)和反向传播人工神经网络(BP-ANN)算法对活性炭吸附总磷(TP)的过程参数(接触时间、初始浓度、温度、pH值)进行了建模和预测,并结合遗传算法(GA)对BP-ANN模型中的反应条件进行优化.结果表明,在BBD-RSM模型中,... 本文利用BBD响应面法(BBD-RSM)和反向传播人工神经网络(BP-ANN)算法对活性炭吸附总磷(TP)的过程参数(接触时间、初始浓度、温度、pH值)进行了建模和预测,并结合遗传算法(GA)对BP-ANN模型中的反应条件进行优化.结果表明,在BBD-RSM模型中,P<0.0001,可较好的对TP的去除过程进行预测,接触时间为TP去除率最显著的参数,TP吸附过程中各因素的相对影响顺序为:接触时间>pH值>温度>初始浓度.采用BP-ANN模型进行优化,最佳网络结构为4-8-1.敏感性分析表明,影响TP去除率的因素依次为接触时间(34.05%)>pH值(28.67%)>温度(19.56%)>初始浓度(17.72%).基于BP-ANN模型,采用GA优化人工渗滤系统运行条件,对TP去除过程的优化结果为:接触时间为720.53min、初始浓度为2.75mg/L、温度为30.62℃、pH为5,达到最佳去除率(99.63%).试验验证分析表明,BP-ANN-GA较BBD-RSM的预测值与实验值相比拥有较高的R 2(0.9939)和较低的RSME(1.2851),说明该模型具有更好的预测能力,能更好的描述人工快速渗滤系统对TP的去除过程. 展开更多
关键词 BBD响应面法 反向传播人工神经网络 遗传算法 总磷 人工快速渗滤系统
在线阅读 下载PDF
基于SSA-BP的孔道压浆料抗压强度预测研究
17
作者 卜良桃 叶好焰 +1 位作者 杜国强 侯琦 《建筑科学与工程学报》 北大核心 2025年第3期115-125,共11页
为实现压浆料抗压强度的精准预测,引入麻雀搜索算法(SSA)优化BP神经网络的初始权重和阈值;设计并开展了表面硬度法与超声法检测试验,以108组试验数据为样本,建立了包含2节点输入层、9节点隐含层与1节点输出层的压浆料抗压强度SSA-BP神... 为实现压浆料抗压强度的精准预测,引入麻雀搜索算法(SSA)优化BP神经网络的初始权重和阈值;设计并开展了表面硬度法与超声法检测试验,以108组试验数据为样本,建立了包含2节点输入层、9节点隐含层与1节点输出层的压浆料抗压强度SSA-BP神经网络预测模型,与BP神经网络、遗传算法(GA)优化后的BP神经网络及测强公式预测结果进行对比;探讨了不同输入参数组合对SSA-BP模型预测效果的影响。结果表明:相比BP模型与GA-BP模型,SSA-BP模型的均方误差(MSE)分别降低了53.23%与26.86%,单次训练时间较GA-BP模型减少了34.40%;相比测强公式,预测值与实测值的判定系数R2从0.937提高至0.975,MSE与平均绝对误差(MAE)分别降低了19.81%与7.20%;单一输入参数的SSA-BP模型误差精度降低,但仍具备良好的泛化能力;SSA-BP模型能够较好挖掘输入、输出参数的数据信息,在拟合优度与预测精度方面比传统方法更有优势,可以准确预测压浆料抗压强度,为孔道压浆料性能预测提供了新方法。 展开更多
关键词 孔道压浆料 麻雀搜索算法 bp神经网络 抗压强度预测 超声法 表面硬度法
在线阅读 下载PDF
基于遗传算法优化BP神经网络的沥青混合料性能预测方法 被引量:2
18
作者 盛佳豪 柳力 +1 位作者 刘朝晖 潘博洋 《科学技术与工程》 北大核心 2025年第3期1214-1224,共11页
为实现沥青混合料性能的快速可靠预测,从材料组成设计角度出发,提出了一种基于遗传算法(genetic algorithm,GA)优化反向传播(back propagation,BP)神经网络的沥青混合料性能预测方法。首先运用灰关联分析方法对多维输入变量进行降维处理... 为实现沥青混合料性能的快速可靠预测,从材料组成设计角度出发,提出了一种基于遗传算法(genetic algorithm,GA)优化反向传播(back propagation,BP)神经网络的沥青混合料性能预测方法。首先运用灰关联分析方法对多维输入变量进行降维处理,确定了沥青混合料性能的核心影响因素,然后结合遗传算法(GA),构建了以核心影响因素为输入层、沥青混合料性能为输出层的GA-BP神经网络预测模型,再对模型进行训练验证分析与预测泛化应用,同时与BP神经网络的训练效果和预测精度进行对比,验证GA-BP神经网络模型的准确性。研究结果表明:空隙率、油石比、公称最大粒径、4.75 mm通过率、沥青种类、软化点、针入度、延度等8项性能特征的灰关联度r>0.6,对沥青混合料性能影响显著;相比于BP神经网络模型,经过GA优化后的BP神经网络模型的均方根误差(root mean square error,RMSE)降低了16%~31%,平均绝对误差(mean absolute error,MAE)降低了15%~24%,R^(2)值提升了0.01~0.27,说明其具有更好的学习拟合能力;在对沥青混合料动态模量、动稳定度、残留稳定度、劈裂抗拉强度比和极限弯拉应变的预测精度上分别提高了35.26%、47.78%、23.13%、31.92%、35.75%,说明GA-BP神经网络模型具有更强的泛化应用能力。研究成果为实现沥青混合料性能的快速预测、指导沥青混合料材料组成设计提供重要参考。 展开更多
关键词 道路工程 性能预测 GA-bp神经网络 沥青混合料 灰关联分析
在线阅读 下载PDF
基于嵌套优化的GA-PSO-BP神经网络短期风功率预测方法研究 被引量:1
19
作者 刘翘楚 王杰 +3 位作者 秦文萍 张文博 陈玉梅 刘佳昕 《电网与清洁能源》 北大核心 2025年第2期138-146,共9页
短期风电功率预测对于保障电力系统稳定运行具有重要意义。针对单一BP(back propagation)神经网络预测模型难以满足风电功率的强随机波动特性,结合遗传算法(geneticalgorithm,GA)和粒子群智能算法(particleswarm optimization,PSO),提... 短期风电功率预测对于保障电力系统稳定运行具有重要意义。针对单一BP(back propagation)神经网络预测模型难以满足风电功率的强随机波动特性,结合遗传算法(geneticalgorithm,GA)和粒子群智能算法(particleswarm optimization,PSO),提出嵌套优化的GA-PSO-BP神经网络短期风电功率预测模型。建立内外双层嵌套的优化机制,内层机制中引入GA算法优化PSO算法学习因子,优化后PSO算法作为外层机制实现BP神经网络阈值和权值的优化。模拟风电数据预测结果表明,比起GA-BP、PSO-BP、长短期记忆网络(long short-term memory,LSTM)预测模型,所提嵌套优化模型在平均绝对误差(mean absolute error,MAE)、均方根误差(root mean squared error,RMSE)、决定系数R2 3个评价维度上均取得了最优值;利用山西某风电场不同月份、不同时段、不同波动特征的实际运行数据进行验证,预测结果表明MAE均小于0.02,R2均大于0.99,所提嵌套优化模型具有较高的预测精度和拟合程度。 展开更多
关键词 风电功率预测 bp神经网络 遗传算法 粒子群算法 嵌套优化
在线阅读 下载PDF
基于PCA-TSO-BPNN模型的海底管道内腐蚀速率预测研究 被引量:1
20
作者 肖荣鸽 刘国庆 +3 位作者 刘博 魏王颖 庄琦 靳帅帅 《热加工工艺》 北大核心 2025年第4期82-88,共7页
近年来,随着我国海洋油气勘探开发力度不断增强,在役的和建设中的海底油气管道越来越多,海底油气管道内腐蚀速率预测对于海底油气管道的日常运行、维护和检修极为重要。为了提高海底油气管道内腐蚀速率预测精度和稳定性,建立了基于主成... 近年来,随着我国海洋油气勘探开发力度不断增强,在役的和建设中的海底油气管道越来越多,海底油气管道内腐蚀速率预测对于海底油气管道的日常运行、维护和检修极为重要。为了提高海底油气管道内腐蚀速率预测精度和稳定性,建立了基于主成分分析(Principal Component Analysis,PCA)和金枪鱼群算法(Tuna Swarm Optimization,TSO)优化BP神经网络的海底管道内腐蚀速率预测组合模型PCA-TSO-BPNN。运用PCA进行数据降维,筛选出海底管道内腐蚀速率的主要影响因素;建立海底管道内腐蚀速率BPNN预测模型,并采用TSO算法对BPNN预测模型的权值和阈值参数进行寻优;利用PCA-TSO-BPNN组合模型对海底管道内腐蚀速率进行预测,并与对比模型进行比较,验证PCA-TSO-BPNN组合模型的可行性和可靠性。结果表明:PCA-TSO-BPNN组合模型的平均绝对百分误差(MAPE)和均方根误差(RMSE)分别为1.8441%和0.06757,远低于对比模型,组合模型具有较高的预测精度和稳定性,可为海底管道内腐蚀防护和流动保障提供决策支持。 展开更多
关键词 bp神经网络 主成分分析 金枪鱼群算法 海底管道 腐蚀速率预测
在线阅读 下载PDF
上一页 1 2 232 下一页 到第
使用帮助 返回顶部