期刊文献+
共找到127篇文章
< 1 2 7 >
每页显示 20 50 100
改进SSA优化BPNN的煤体瓦斯渗透率预测模型
1
作者 汪伟 崔欣超 +3 位作者 祁云 李绪萍 王璜瑞 齐庆杰 《中国安全科学学报》 北大核心 2025年第2期137-143,共7页
为更加精确地预测煤体瓦斯渗透率,进而保障煤矿安全生产,构建基于改进麻雀搜索算法(ISSA)优化反向传播神经网络(BPNN)的煤体瓦斯渗透率预测模型。首先,通过引入Sine混沌映射和高斯变异改进麻雀搜索算法(SSA),以增强其全局搜索能力和局... 为更加精确地预测煤体瓦斯渗透率,进而保障煤矿安全生产,构建基于改进麻雀搜索算法(ISSA)优化反向传播神经网络(BPNN)的煤体瓦斯渗透率预测模型。首先,通过引入Sine混沌映射和高斯变异改进麻雀搜索算法(SSA),以增强其全局搜索能力和局部寻优精度,从而优化BPNN的权值和阈值配置;然后,通过皮尔逊相关系数矩阵和核主成分分析(KPCA)处理瓦斯渗透率影响因素的数据,以提高模型的计算效率和准确性,并以累积方差达88.59%的3个主成分提取为模型输入,渗透率作为输出进行试验;最后,将该模型应用于山西某煤矿进行实例验证。结果表明:ISSA-BPNN在平均绝对误差(MAE)、平均绝对百分比误差(MAPE)、均方根误差(RMSE)和决定系数R^(2)等4个指标上优于粒子群算法(PSO)优化BPNN、PSO优化支持向量机(PSO-SVM)、PSO优化最小二乘支持向量机(LSSVM)及SSA优化BPNN(SSA-BPNN)模型,且相较于其他模型在测试样本中的平均绝对误差(MAE)分别降低0.0327、0.022、0.0179、0.0182;MAPE分别降低5.15%、3.14%、2.76%、2.36%;RMSE分别降低0.0316、0.0279、0.0188、0.0222;R^(2)分别提高0.0775、0.0658、0.0401、0.0493;实例验证表明模型可靠性和稳定性较高。 展开更多
关键词 改进麻雀搜索算法(ISSA) 反向传播神经网络(bpnn) 煤体瓦斯 渗透率 预测模型
在线阅读 下载PDF
基于改进麻雀搜索算法优化BPNN的电阻点焊质量预测 被引量:4
2
作者 罗震 董建伟 胡建明 《天津大学学报(自然科学与工程技术版)》 EI CAS CSCD 北大核心 2024年第5期445-451,共7页
电阻点焊技术由于具有高效、自动化程度高等焊接特点,被广泛应用于汽车、航空航天和公共交通等制造领域,由于焊点在封闭状态下进行,焊接过程存在诸多影响因素且无法直接检测,因此,准确预测电阻点焊质量是生产过程中必不可少的环节.本文... 电阻点焊技术由于具有高效、自动化程度高等焊接特点,被广泛应用于汽车、航空航天和公共交通等制造领域,由于焊点在封闭状态下进行,焊接过程存在诸多影响因素且无法直接检测,因此,准确预测电阻点焊质量是生产过程中必不可少的环节.本文以2219/5A06铝合金为研究对象,在3种不同的装配条件(包括间隙和间距)下进行电阻点焊工艺信号的分析,并进行人工智能建模.为了提高电阻点焊质量评价的性能和效率,本文采用Logistic-Tent(LT)复合映射改进麻雀搜索算法(SSA)对反向传播神经网络(LT-SSA-BPNN)模型进行优化,模型的输入和输出分别为多信号融合后的变量和熔核直径.实验结果表明,与传统的标准反向传播神经网络(BPNN)模型相比,经过LT-SSA-BP模型优化后,预测结果的平均绝对误差(MAE)、均方误差(MSE)和均方根误差(RMSE)分别降低了36.17%、17.55%和51.75%.同时,LT-SSA-BP神经网络在添加了不同间隙和间距条件作为训练集后,其预测稳定性明显提高,可以成功预测电阻点焊质量. 展开更多
关键词 电阻点焊 质量预测 麻雀搜索算法 反向传播神经网络模型
在线阅读 下载PDF
基于BPNN和MOOGA的高速联轴器多目标优化方法 被引量:2
3
作者 王艺琳 王维民 +2 位作者 李维博 王珈乐 张帅 《机电工程》 CAS 北大核心 2024年第2期236-244,共9页
针对高转速、复合工况下膜盘联轴器难以保证其强度特性问题,对已有膜盘联轴器强度及动力学特性进行了研究,提出了一种基于反向传播神经网络(BPNN)和多目标优化遗传算法(MOOGA)的高速联轴器多目标优化方法。首先,为了得到优化所需的关键... 针对高转速、复合工况下膜盘联轴器难以保证其强度特性问题,对已有膜盘联轴器强度及动力学特性进行了研究,提出了一种基于反向传播神经网络(BPNN)和多目标优化遗传算法(MOOGA)的高速联轴器多目标优化方法。首先,为了得到优化所需的关键参数,采用了正交实验结合多因素方差分析的方法,选取了联轴器优化参数;然后,基于已选取的关键参数,采用BPNN方法构建了截面应力和弯曲刚度的目标函数,并将其与多项式拟合方法进行了对比,对BPNN方法的精确性进行了验证;最后,采用MOOGA方法对目标函数进行了多目标优化,并将优化前后结果进行了对比分析。研究结果表明:采用BPNN结合MOOGA的方法对联轴器设计参数进行优化,在满足联轴器刚度需求的情况下,可有效降低联轴器膜盘的危险截面应力;优化后,联轴器危险应力减小了18.2%,弯曲刚度降低了5.05%,联轴器角向补偿能力增加了0.1°,从而证明了仿真的有效性。该结果可以为挠性联轴器参数优化设计提供参考。 展开更多
关键词 膜盘联轴器 机械强度 动力学特性 反向传播神经网络 多目标优化遗传算法 参数优化
在线阅读 下载PDF
基于MFO-BPNN的螺旋钻机钻速预测研究
4
作者 李嘉辉 王英 +3 位作者 郑荣跃 叶军 赵京昊 陈立 《机电工程》 CAS 北大核心 2024年第4期633-642,共10页
针对利用现有经验公式所建立的螺旋钻机钻速预测模型存在准确度不足的问题,提出了一种基于飞蛾扑火算法(MFO)的反向传播神经网络(BPNN)钻速预测模型。首先,对MFO算法的基本原理进行了研究,构建了MFO算法优化BPNN的具体流程;接着,采集了... 针对利用现有经验公式所建立的螺旋钻机钻速预测模型存在准确度不足的问题,提出了一种基于飞蛾扑火算法(MFO)的反向传播神经网络(BPNN)钻速预测模型。首先,对MFO算法的基本原理进行了研究,构建了MFO算法优化BPNN的具体流程;接着,采集了江苏无锡某施工现场钻探数据,并分析了钻速影响因素,运用小波阈值降噪、归一化和灰色关联度分析等系列方法对采集数据进行了预处理,得到了训练和测试集;然后,将MFO算法运用于神经网络的权值和阈值训练,以代替原有梯度下降法,建立了MFO-BPNN钻速预测模型;最后,对上述预测模型与BPNN模型、遗传算法优化反向传播神经网络(GA-BPNN)模型以及粒子群优化算法优化反向传播神经网络(PSO-BPNN)模型的预测结果和评价指标进行了详细的对比分析。研究结果表明:运用MFO-BPNN建立的钻速预测模型,其可靠性达到了91.65%,其决定系数(R 2)优于其他3种预测模型,3项误差指标也是其中最低的,说明该模型的预测精度良好,适合于桩基础工程的实际应用,可为复杂因素影响下的钻速预测提供一种新思路。 展开更多
关键词 螺旋钻机 钻速预测 飞蛾扑火算法 反向传播神经网络 遗传算法优化反向传播神经网络 粒子群优化算法优化反向传播神经网络 决定系数 桩基础工程
在线阅读 下载PDF
基于MCDM-BPNN的城市内涝风险评价及调蓄池选址
5
作者 郝景开 李红艳 +3 位作者 张峰 张翀 毛立波 刘大为 《中国安全科学学报》 CAS CSCD 北大核心 2024年第8期214-221,共8页
为建立一套较为完善的城市内涝风险评价体系,并据此确定调蓄池位置,首先,从积水风险、超载风险和边侧进流量3个维度构建评价指标,设计一种包括改进层次分析法(IAHP)、反熵权法(AEW)和优劣解距离法(TOPSIS)的混合多准则决策框架(MCDM);然... 为建立一套较为完善的城市内涝风险评价体系,并据此确定调蓄池位置,首先,从积水风险、超载风险和边侧进流量3个维度构建评价指标,设计一种包括改进层次分析法(IAHP)、反熵权法(AEW)和优劣解距离法(TOPSIS)的混合多准则决策框架(MCDM);然后,将IAHP-AEW-TOPSIS模型分别与IAHP-TOPSIS、AEW-TOPSIS模型对比,通过斯皮尔曼排序相关系数验证排序一致性,通过计算变异系数、相对极差和灵敏度证实IAHP-AEW-TOPSIS模型的性能;最后,结合反向传播神经网络(BPNN),建立MCDM-BPNN模型,并以山西省某一内涝易发区域为例进行验证。结果表明:积水风险对城市内涝风险评价体系的影响最为显著,所占权重为0.46,其次为超载风险,所占权重为0.36;节点位置与连接管道数量很大程度上对该节点的内涝风险产生影响,在管道汇接处或汇流面积较大处内涝出现更为频繁;IAHP-AEW-TOPSIS模型在样本判别方面具有更好的性能;在5年与10年重现期下,MCDM-BPNN模型验证集准确率分别为93.3%和100%,能够准确快速模拟和预测城市洪水;应用案例设置调蓄池后,高、中、低风险节点数量分别为7、9、30和6、19、21,内涝溢流削减效果显著。 展开更多
关键词 多准则决策框架(MCDM) 反向传播神经网络(bpnn) 城市内涝 风险评价 调蓄池
在线阅读 下载PDF
APSO-BPNN模型在滨海环境中铁质材料腐蚀速率预测中的应用
6
作者 杨彪 肖佳 +2 位作者 欧阳晨 朱金晨 闫莹 《腐蚀与防护》 CAS CSCD 北大核心 2024年第12期72-79,共8页
针对滨海复杂环境中铁质材料腐蚀速率预测的问题,利用自适应粒子群优化(APSO)算法对反向传播神经网络(BPNN)中的权重和阈值进行优化,构建了一种APSO-BPNN模型,以提高铁质材料在滨海环境中腐蚀速率预测的准确性。基于暴露试验数据,对比了... 针对滨海复杂环境中铁质材料腐蚀速率预测的问题,利用自适应粒子群优化(APSO)算法对反向传播神经网络(BPNN)中的权重和阈值进行优化,构建了一种APSO-BPNN模型,以提高铁质材料在滨海环境中腐蚀速率预测的准确性。基于暴露试验数据,对比了APSO-BPNN模型与传统BPNN模型的预测效果。结果表明:APSO-BPNN模型在训练集上的决定系数R_(2)提高了23.65%,其在测试集上的R2达到0.9258,平均绝对误差(MAE)、平均绝对百分比误差(MAPE)和均方根误差(RMSE)分别下降至11.55、22.26%和14.43。 展开更多
关键词 铁质材料 自适应粒子群优化(APSO)算法 反向传播神经网络(bpnn) 腐蚀速率 预测模型
在线阅读 下载PDF
基于ADASYN数据平衡化的PSO-BPNN变压器套管故障诊断 被引量:4
7
作者 杨昊 胡文秀 +3 位作者 张璐 陈晋鹏 周思佳 赵思瑞 《电力工程技术》 北大核心 2024年第2期170-178,共9页
变压器套管作为设备重要的绝缘部件,其绝缘性能直接影响着设备的安全运行。为诊断变压器套管绝缘状态,改善变压器套管油中溶解气体的小样本不平衡数据对变压器套管故障诊断结果的影响,使用粒子群优化结合反向传播神经网络(particle swar... 变压器套管作为设备重要的绝缘部件,其绝缘性能直接影响着设备的安全运行。为诊断变压器套管绝缘状态,改善变压器套管油中溶解气体的小样本不平衡数据对变压器套管故障诊断结果的影响,使用粒子群优化结合反向传播神经网络(particle swarm optimization combined with back propagation neural network,PSO-BPNN)和自适应综合过采样(adaptive synthetic sampling,ADASYN)算法对变压器套管进行故障诊断。首先收集变压器套管的历史故障数据,建立具有明确故障类别的变压器套管油中溶解气体样本集,并通过ADASYN算法对原始数据中的少数类样本进行合成,得到平衡后的故障数据,然后将平衡后的油中溶解气体作为模型输入,故障状态作为标签输出,通过PSO-BPNN模型对变压器套管进行诊断,最后在原始样本集下使用反向传播神经网络(back propagation neural network,BPNN)、遗传结合反向传播神经网络(genetic combined with back propagation neural network,G-BPNN)算法、布谷鸟搜索结合反向传播神经网络(cuckoo search combined with back propagation neural network,CS-BPNN)算法以及PSO-BPNN模型对套管进行诊断。结果表明,针对变压器油纸套管绝缘状态进行故障诊断的多个模型中,基于ADASYN平衡数据后的PSO-BPNN模型和其他模型相比准确度最高,能有效减小小样本不平衡数据对诊断结果的影响,为判断变压器油纸套管绝缘性能提供了有效方法。 展开更多
关键词 变压器套管 故障诊断 油中溶解气体 反向传播神经网络(bpnn) 不平衡数据 自适应综合过采样(ADASYN)
在线阅读 下载PDF
基于SBAS-InSAR和BPNN的铀尾矿坝形变智能监测与预测 被引量:3
8
作者 周怡 彭国文 +3 位作者 黄召 阳鹏飞 刘丹丹 陈小丽 《中国安全科学学报》 CAS CSCD 北大核心 2024年第4期145-152,共8页
为提高铀尾矿库退役治理的监测工作效率,提出一个基于小基线合成孔径雷达干涉测量(SBAS-InSAR)技术和反向传播神经网络(BPNN)的铀尾矿库形变智能监测与预测模型。首先,利用SBAS-InSAR技术得到铀尾矿库2020年12月—2022年12月的累计形变... 为提高铀尾矿库退役治理的监测工作效率,提出一个基于小基线合成孔径雷达干涉测量(SBAS-InSAR)技术和反向传播神经网络(BPNN)的铀尾矿库形变智能监测与预测模型。首先,利用SBAS-InSAR技术得到铀尾矿库2020年12月—2022年12月的累计形变量与年均形变速率,并用第一拦水坝的7个全球导航卫星系统(GNSS)监测站验证InSAR监测值的精度;然后,选取铀尾矿库中的雷公塘坝、南坡横坝、战斗坝和松林坝4个坝段的累计沉降量并结合降雨量进行沉降分析;最后,随机提取铀尾矿坝100个沉降点的累积沉降数据,通过BPNN预测铀尾矿坝的形变。结果表明:2年间铀尾矿库的形变速率在-60.06~34.94 mm/a,铀尾矿坝整体处于下沉状态,累计沉降量最大为-46.67 mm。BPNN预测值与实际监测值的平均绝对误差为0.586 mm,均方误差为0.624 mm。 展开更多
关键词 小基线合成孔径雷达干涉测量(SBAS-InSAR) 反向传播神经网络(bpnn) 铀尾矿库 形变智能监测 Sentinel-1A
在线阅读 下载PDF
基于SSA-BPNN的锂离子电池SOH估算
9
作者 张凯飞 张金龙 吕满平 《电源学报》 CSCD 北大核心 2024年第5期278-285,318,共9页
锂离子电池已被广泛应用于储能系统与电动汽车中,精确地估算锂离子电池健康状态SOH(state-of-health)是保证系统安全可靠运行的必要条件。从容量的角度分析SOH,在恒流-恒压CC-CV(constant current-constant voltage)充电电压和温度曲线... 锂离子电池已被广泛应用于储能系统与电动汽车中,精确地估算锂离子电池健康状态SOH(state-of-health)是保证系统安全可靠运行的必要条件。从容量的角度分析SOH,在恒流-恒压CC-CV(constant current-constant voltage)充电电压和温度曲线中提取了7个健康特征HI(health indicator)作为输入,基于数据驱动法提出了麻雀搜索算法-反向传播神经网络SSA-BPNN(sparrow search algorithm-back propagation neural network)的锂离子电池SOH估算方法,并应用数据增强进一步提高模型的鲁棒性,最终在NASA锂离子电池随机使用数据集上进行验证。通过与未采取数据增强的传统BP神经网络相比,获得SOH估算精度有明显提升,测试集SOH估算的最大绝对误差和均方根误差分别小于3%和1.32%,实验结果表明该方法兼顾误差小,收敛快,全局搜索能力且能够适应电池老化差异特性。 展开更多
关键词 锂离子电池 健康状态估算 数据驱动 SSA-bpnn 数据增强
在线阅读 下载PDF
变压器色谱监测中的 BPNN 故障诊断法 被引量:69
10
作者 王财胜 孙才新 廖瑞金 《中国电机工程学报》 EI CSCD 北大核心 1997年第5期322-325,共4页
本文将BP神经网络应用于变压器故障诊断。建立起学习样本集,提出了两种输入方式,并用它对神经网络进行训练。通过验证,结果显示该BPNN诊断法有良好的应用前景。
关键词 变压器 BP神经网络 色谱监测 故障诊断
在线阅读 下载PDF
BPNN-HDMR非线性近似模型方法及应用 被引量:6
11
作者 李伟平 窦现东 +1 位作者 王振兴 柳超 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第5期32-38,共7页
提出基于误差反向传播神经网络(Back Propagation Neural Network,BPNN)的高维模型表示(high dimensional model representation,HDMR)方法,即BPNN-HDMR方法.BPNN-HDMR方法的显著优势是将BP神经网络的非线性函数逼近能力与高维模型的层... 提出基于误差反向传播神经网络(Back Propagation Neural Network,BPNN)的高维模型表示(high dimensional model representation,HDMR)方法,即BPNN-HDMR方法.BPNN-HDMR方法的显著优势是将BP神经网络的非线性函数逼近能力与高维模型的层级结构理论相结合来构建近似模型,并能够揭示输入变量之间固有的线性或非线性关系及其相关性,将构造模型复杂度由指数级增长降阶为多项式级,有效地解决了高维建模问题.通过测试和对比验证了该算法的效率和建模能力,并将该算法应用于矿用自卸车安全驾驶室翻车保护装置(Roll-Over Protective Structure,ROPS)的优化设计.通过优化结果验证了所提方法的可行性和有效性. 展开更多
关键词 近似模型 高维模型 误差反向传播神经网络 非线性 结构优化
在线阅读 下载PDF
基于AHP和BPNN的海事网格风险预警模型 被引量:6
12
作者 胡志武 吕鑫鑫 王胜正 《上海海事大学学报》 北大核心 2014年第4期20-25,共6页
为解决现阶段海事网格化管理的风险评价局限于网格划分过程、评价方法单一、可靠性低的问题,以系统工程和网格化管理的理论和方法为基础,基于层次分析法(Analytic Hierarchy Process,AHP)和反向传播神经网络(Back Propagation Neural Ne... 为解决现阶段海事网格化管理的风险评价局限于网格划分过程、评价方法单一、可靠性低的问题,以系统工程和网格化管理的理论和方法为基础,基于层次分析法(Analytic Hierarchy Process,AHP)和反向传播神经网络(Back Propagation Neural Network,BPNN),建立海事网格风险预警模型.首先,对海事网格风险影响因素进行分析,建立风险评价指标体系;然后,运用AHP界定各海事网格风险等级,再运用BPNN预测未来周期网格的风险等级;最后,综合上述两种方法的风险评估结果,确立海事网格风险预警等级.模型增加了海事网格风险预警的可靠性和准确性,可为海事部门提供风险控制的信息支撑,提升网格化管理的效果. 展开更多
关键词 网格化管理 风险预警模型 层次分析法(AHP) 反向传播神经网络(bpnn)
在线阅读 下载PDF
基于BPNN的手足口病重症化进程中的相关因素变化及预测分析 被引量:2
13
作者 马晓梅 闫国立 +5 位作者 刘颖 孙春阳 隋美丽 任静朝 郗园林 段广才 《西安交通大学学报(医学版)》 CAS CSCD 北大核心 2016年第5期721-725,共5页
目的探讨BP神经网络(BPNN)模型在儿童手足口病(HFMD)重症化进程预测中的应用价值,为HFMD重症病例早期识别提供参考依据。方法采用MATLAB 7.0软件对2013年4~6月河南郑州某医院收治的445例HFMD患儿临床资料构建BPNN模型,得出平均影... 目的探讨BP神经网络(BPNN)模型在儿童手足口病(HFMD)重症化进程预测中的应用价值,为HFMD重症病例早期识别提供参考依据。方法采用MATLAB 7.0软件对2013年4~6月河南郑州某医院收治的445例HFMD患儿临床资料构建BPNN模型,得出平均影响值(MIV)排序并归一化;从中挑选32例符合重症标准且自发病到重症的病例作为重症组,对照组纳入60例普通病例,以较大MIV值的因素为变量重新整理数据,统计分析得出单个因素水平和综合因素水平在重症化期间的变化趋势,阐述其与HFMD重症早期识别的关系。结果在HFMD重症化进程中,精神差、颈强直、易惊的变化是先上升,重症当天及前一天平稳且至最高,随后下降;呼吸频率、心率、嗜睡、热程≥3d及血糖水平的变化是先升后降,重症当天最高;手足抖动的变化是先升后降,重症前一天最高;呕吐呈下降趋势;热峰大致呈下降趋势,重症当天略微回升,之后降至正常体温;白细胞计数变化基本不大,均高于正常值范围,在重症次日恢复至正常值水平;综合因素水平是先上升至重症当天并达到最高,之后下降。结论 BPNN模型可用于分析HFMD重症化进程中的相关因素变化,可为重症病例的早期识别提供参考依据。 展开更多
关键词 bpnn HFMD 重症化 MIV
在线阅读 下载PDF
基于BPNN的发动机停机相位预测研究 被引量:3
14
作者 姚国仲 徐小鸿 +2 位作者 王贵勇 邓冬荣 路璐 《传感器与微系统》 CSCD 北大核心 2023年第9期52-55,60,共5页
为避免柴油发动机启动阶段因建立喷油时序而在寻找信号特征齿上花费过多时间,基于反向传播神经网络(BPNN)建立了发动机停机相位预测模型。以某双缸柴油机停油时转速和负荷为输入,单片机和增量式编码器为核心计算的原有曲轴位置传感器“... 为避免柴油发动机启动阶段因建立喷油时序而在寻找信号特征齿上花费过多时间,基于反向传播神经网络(BPNN)建立了发动机停机相位预测模型。以某双缸柴油机停油时转速和负荷为输入,单片机和增量式编码器为核心计算的原有曲轴位置传感器“失信点”后的相对相位变化为输出,建立了BPNN停机相位预测模型。预测结果表明:模型决定系数和修正决定系数均大于0.91,平均相对误差为5.9%,模型对于发动机停机过程中不可信点至静止期间转过的相对角度具有预测性,可作为发动机再启动阶段相位快速同步和判缸的首选方式。 展开更多
关键词 反向传播神经网络 位置同步 增量式编码器 停机相位
在线阅读 下载PDF
基于稀疏编码和SCGBPNN的鳞翅目昆虫图像识别 被引量:8
15
作者 竺乐庆 张真 《昆虫学报》 CAS CSCD 北大核心 2013年第11期1335-1341,共7页
【目的】为了给林业、农业或植物检疫等行业人员提供一种方便快捷的昆虫种类识别方法,本文提出了一种新颖的鳞翅目昆虫图像自动识别方法。【方法】首先通过预处理对采集的昆虫标本图像去除背景,分割出双翅,并对翅图像的位置进行校正。... 【目的】为了给林业、农业或植物检疫等行业人员提供一种方便快捷的昆虫种类识别方法,本文提出了一种新颖的鳞翅目昆虫图像自动识别方法。【方法】首先通过预处理对采集的昆虫标本图像去除背景,分割出双翅,并对翅图像的位置进行校正。然后把校正后的翅面分割成多个超像素,用每个超像素的l,a,b颜色及x,y坐标平均值作为其特征数据。接下来用稀疏编码(SC)算法训练码本、生成编码并汇集成特征向量训练量化共轭梯度反向传播神经网络(SCG BPNN),并用得到的BPNN进行分类识别。【结果】该方法对包含576个样本的昆虫图像的数据库进行了测试,取得了高于99%的识别正确率,并有理想的时间性能、鲁棒性及稳定性。【结论】实验结果证明了本文方法在识别鳞翅目昆虫图像上的有效性。 展开更多
关键词 昆虫 鳞翅目 图像识别 超像素分割 稀疏编码 量化共轭梯度法 反向传播神经网
在线阅读 下载PDF
紫斑牡丹花粉片制备工艺优化及其半成品颗粒质量控制
16
作者 彭腾腾 李海燕 +4 位作者 尹盼盼 王信 范彬 马趣环 石晓峰 《中成药》 北大核心 2025年第1期42-50,共9页
目的优化紫斑牡丹花粉片制备工艺,并控制其半成品颗粒质量。方法在单因素试验基础上,以花粉用量、乳糖与羟丙基甲基纤维素比例、交联聚维酮用量为影响因素,外观、硬度、脆碎度、崩解度的综合评分为评价指标,响应面试验结合反向传播神经... 目的优化紫斑牡丹花粉片制备工艺,并控制其半成品颗粒质量。方法在单因素试验基础上,以花粉用量、乳糖与羟丙基甲基纤维素比例、交联聚维酮用量为影响因素,外观、硬度、脆碎度、崩解度的综合评分为评价指标,响应面试验结合反向传播神经网络(BPNN)-遗传算法(GA)优化制备工艺。根据2020年版《中国药典》相关规定,测定半成品颗粒含水量、流动性、可压性、吸湿性。结果最佳条件为花粉用量76%,乳糖与羟丙基甲基纤维素比例1∶2,交联聚维酮用量13%,交联聚维酮内外加入比例1∶2,乙醇体积分数70%,综合评分为33.2分。半成品颗粒平均休止角为18.67°,压缩度为18.71%,豪斯纳比率为1.23%,最大吸湿率为13.17%,临界相对湿度为55.72%。结论该方法合理可行,可为紫斑牡丹花粉相关产品开发提供新思路,并且其半成品颗粒质量可控,能保证制粒过程顺利和提高花粉片质量。 展开更多
关键词 紫斑牡丹花粉片 制备工艺 半成品颗粒 质量控制 响应面试验 反向传播神经网络(bpnn) 遗传算法(GA)
在线阅读 下载PDF
基于PCA-BPNN方法的中长期电力负荷预测 被引量:2
17
作者 张石 张瑞友 汪定伟 《控制工程》 CSCD 北大核心 2010年第6期800-802,共3页
针对基于反向传播神经网络(Back-Propagation Neural Network,BPNN)的中长期电力负荷预测算法中,预测模型的精度和泛化能力易受输入样本变量影响这一问题,利用主元分析(Principal Component Analysis,PCA)方法能消除变量间相关性的特点,... 针对基于反向传播神经网络(Back-Propagation Neural Network,BPNN)的中长期电力负荷预测算法中,预测模型的精度和泛化能力易受输入样本变量影响这一问题,利用主元分析(Principal Component Analysis,PCA)方法能消除变量间相关性的特点,对BPNN的输入空间进行重构,消除重叠信息,提取主导因素,优化了网络结构,提高了预测精度。通过实例验证了该方法的有效性。此方法可以使用电计划部门实时、准确的预测电力负荷,以此最优的配比发电机组,也可减少由于预测不准确带来的电力系统各种故障的发生。 展开更多
关键词 主元分析 BP神经网络 负荷预测 电力系统
在线阅读 下载PDF
基于多BPNN敏感性分析的气候变化脆弱性指标赋权方法 被引量:1
18
作者 张质明 马文林 +1 位作者 张明顺 黎学琴 《自然灾害学报》 CSCD 北大核心 2014年第5期140-147,共8页
为尽量减小气候变化脆弱性评估中对指标权重的人为干扰,通过对某市卫生领域的气候变化脆弱性的评价案例,提出了一种基于多反向传播神经网络(BPNN)敏感性分析的气候变化脆弱性指标赋权方法。结果表明:多组BPNN拟合与泛化能力普遍较好,且... 为尽量减小气候变化脆弱性评估中对指标权重的人为干扰,通过对某市卫生领域的气候变化脆弱性的评价案例,提出了一种基于多反向传播神经网络(BPNN)敏感性分析的气候变化脆弱性指标赋权方法。结果表明:多组BPNN拟合与泛化能力普遍较好,且每个模型敏感性分析结果具有一致性,总敏感性指数远大于一阶敏感性指数,反映了气候指标巨大潜在影响。所提出的敏感性分析具有较好的稳定性;该方法能够有效识别出气候指标的直接影响及间接影响,可以为指标权值的确定提供参考。 展开更多
关键词 赋权 气候变化 脆弱性 反向传播神经网络(bpnn) 敏感性分析
在线阅读 下载PDF
基于话者特征图案的BPNN话者模型 被引量:2
19
作者 方绍武 戴蓓倩 《计算机学报》 EI CSCD 北大核心 2002年第5期556-560,共5页
该文提出了一种用于说话人识别的基于话者特征图案的 BPNN话者模型 ,该话者模型解决了语音信号的时长变化与神经网络输入层结点数固定不变之间的矛盾 .利用 VQ技术对所有话者的语音样本训练出话者特征图案 ,再将语音样本对该特征图案进... 该文提出了一种用于说话人识别的基于话者特征图案的 BPNN话者模型 ,该话者模型解决了语音信号的时长变化与神经网络输入层结点数固定不变之间的矛盾 .利用 VQ技术对所有话者的语音样本训练出话者特征图案 ,再将语音样本对该特征图案进行映射 ,在映射域解决了语音样本的时间规正问题 .同时 。 展开更多
关键词 话者特征图案 bpnn话者模型 隶属度 语音识别 人工神经网络
在线阅读 下载PDF
RDWKCPSO-PCA-BPNN的汽车燃油消耗预测 被引量:2
20
作者 姜平 祖春胜 李晓勇 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第1期7-13,共7页
针对不同乘用车综合工况下理论百公里燃油消耗数据,文章提出了一种基于主成分分析(principal component analysis,PCA)和BP神经网络(back propagation neural network,BPNN)的燃油消耗预测模型;通过PCA方法对选取影响理论燃油消耗的24... 针对不同乘用车综合工况下理论百公里燃油消耗数据,文章提出了一种基于主成分分析(principal component analysis,PCA)和BP神经网络(back propagation neural network,BPNN)的燃油消耗预测模型;通过PCA方法对选取影响理论燃油消耗的24个因素进行压缩,简化模型结构,再利用BPNN算法,构建燃油消耗预测模型;由于神经网络中的权值和阈值对预测模型效果影响较大,采用基于随机动态惯性权重和Kent映射的混沌粒子群算法(RDWKCPSO)优化PCA-BPNN模型中的权值和阈值。对3种标准函数的寻优测试结果表明,RDWKCPSO优化算法更容易跳出局部最优实现全局寻优,提高了模型适应能力及预测精度。 展开更多
关键词 BP神经网络 权值和阈值 混沌粒子群算法 主成分分析 燃油消耗预测 Kent映射
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部