期刊文献+
共找到1,862篇文章
< 1 2 94 >
每页显示 20 50 100
AHP-CRITIC结合BP-ANN的归志方提取工艺优化研究
1
作者 李月婷 魏祖英 +7 位作者 王腾腾 程超 谭颖 许一帆 霍滢滢 高家乐 刘洁 肖红斌 《分析测试学报》 北大核心 2025年第11期2256-2264,共9页
基于层次分析-指标相关性权重确定的组合加权法(AHP-CRITIC)结合反向传播人工神经网络(BPANN)仿真预测对归志方的提取工艺进行优化。AHP-CRITIC组合加权法确定人参皂苷Rg1、人参皂苷Re、人参皂苷Rb1、细叶远志皂苷、芍药苷、阿魏酸和出... 基于层次分析-指标相关性权重确定的组合加权法(AHP-CRITIC)结合反向传播人工神经网络(BPANN)仿真预测对归志方的提取工艺进行优化。AHP-CRITIC组合加权法确定人参皂苷Rg1、人参皂苷Re、人参皂苷Rb1、细叶远志皂苷、芍药苷、阿魏酸和出膏率的权重系数分别为0.1907、0.2175、0.2341、0.0894、0.1195、0.0875、0.0613,最佳提取工艺为加10倍量溶剂、每次2 h、提取3次。在此基础上,基于BPANN仿真模型预测与验证了该最佳工艺。进一步将AHP-CRITIC与BP-ANN进行联合分析,结果表明10倍量溶剂、每次1 h、提取2次与上述最佳工艺参数无统计学差异,即在此工艺下可以保证提取效果并节约能源,为后续归志方大生产提取工艺选择提供了参考。该文建立的AHP-CRITIC结合BP-ANN的综合试验方法为中药复方提取工艺的现代化研究提供了可靠的方法支撑。 展开更多
关键词 归志方 层次分析-指标相关性权重确定的组合加权法(AHP-CRITIC) 反向传播人工神经网络(bp-ann) 提取工艺 正交试验设计
在线阅读 下载PDF
基于BP-ANN的人工渗滤系统去除总磷过程优化
2
作者 刘元坤 曹塬琪 +2 位作者 于艾鑫 李星 郭晓天 《中国环境科学》 北大核心 2025年第6期3151-3160,共10页
本文利用BBD响应面法(BBD-RSM)和反向传播人工神经网络(BP-ANN)算法对活性炭吸附总磷(TP)的过程参数(接触时间、初始浓度、温度、pH值)进行了建模和预测,并结合遗传算法(GA)对BP-ANN模型中的反应条件进行优化.结果表明,在BBD-RSM模型中,... 本文利用BBD响应面法(BBD-RSM)和反向传播人工神经网络(BP-ANN)算法对活性炭吸附总磷(TP)的过程参数(接触时间、初始浓度、温度、pH值)进行了建模和预测,并结合遗传算法(GA)对BP-ANN模型中的反应条件进行优化.结果表明,在BBD-RSM模型中,P<0.0001,可较好的对TP的去除过程进行预测,接触时间为TP去除率最显著的参数,TP吸附过程中各因素的相对影响顺序为:接触时间>pH值>温度>初始浓度.采用BP-ANN模型进行优化,最佳网络结构为4-8-1.敏感性分析表明,影响TP去除率的因素依次为接触时间(34.05%)>pH值(28.67%)>温度(19.56%)>初始浓度(17.72%).基于BP-ANN模型,采用GA优化人工渗滤系统运行条件,对TP去除过程的优化结果为:接触时间为720.53min、初始浓度为2.75mg/L、温度为30.62℃、pH为5,达到最佳去除率(99.63%).试验验证分析表明,BP-ANN-GA较BBD-RSM的预测值与实验值相比拥有较高的R 2(0.9939)和较低的RSME(1.2851),说明该模型具有更好的预测能力,能更好的描述人工快速渗滤系统对TP的去除过程. 展开更多
关键词 BBD响应面法 反向传播人工神经网络 遗传算法 总磷 人工快速渗滤系统
在线阅读 下载PDF
Adaptive fuze-warhead coordination method based on BP artificial neural network 被引量:3
3
作者 Peng Hou Yang Pei Yu-xue Ge 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第11期117-133,共17页
The appropriate fuze-warhead coordination method is important to improve the damage efficiency of air defense missiles against aircraft targets. In this paper, an adaptive fuze-warhead coordination method based on the... The appropriate fuze-warhead coordination method is important to improve the damage efficiency of air defense missiles against aircraft targets. In this paper, an adaptive fuze-warhead coordination method based on the Back Propagation Artificial Neural Network(BP-ANN) is proposed, which uses the parameters of missile-target intersection to adaptively calculate the initiation delay. The damage probabilities at different radial locations along the same shot line of a given intersection situation are calculated, so as to determine the optimal detonation position. On this basis, the BP-ANN model is used to describe the complex and highly nonlinear relationship between different intersection parameters and the corresponding optimal detonating point position. In the actual terminal engagement process, the fuze initiation delay is quickly determined by the constructed BP-ANN model combined with the missiletarget intersection parameters. The method is validated in the case of the single-shot damage probability evaluation. Comparing with other fuze-warhead coordination methods, the proposed method can produce higher single-shot damage probability under various intersection conditions, while the fuzewarhead coordination effect is less influenced by the location of the aim point. 展开更多
关键词 Aircraft vulnerability Fuze-warhead coordination bp artificial neural network Damage probability Initiation delay
在线阅读 下载PDF
Structural reliability analysis using enhanced cuckoo search algorithm and artificial neural network 被引量:6
4
作者 QIN Qiang FENG Yunwen LI Feng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第6期1317-1326,共10页
The present study proposed an enhanced cuckoo search(ECS) algorithm combined with artificial neural network(ANN) as the surrogate model to solve structural reliability problems. In order to enhance the accuracy and co... The present study proposed an enhanced cuckoo search(ECS) algorithm combined with artificial neural network(ANN) as the surrogate model to solve structural reliability problems. In order to enhance the accuracy and convergence rate of the original cuckoo search(CS) algorithm, the main parameters namely, abandon probability of worst nests paand search step sizeα0 are dynamically adjusted via nonlinear control equations. In addition, a global-best guided equation incorporating the information of global best nest is introduced to the ECS to enhance its exploitation. Then, the proposed ECS is linked to the well-trained ANN model for structural reliability analysis. The computational capability of the proposed algorithm is validated using five typical structural reliability problems and an engineering application. The comparison results show the efficiency and accuracy of the proposed algorithm. 展开更多
关键词 structural reliability enhanced cuckoo search(ECS) artificial neural network(ann) cuckoo search(CS) algorithm
在线阅读 下载PDF
Determination of penetration depth at high velocity impact using finite element method and artificial neural network tools 被引量:4
5
作者 Nam?k KILI? Blent EKICI Selim HARTOMACIOG LU 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2015年第2期110-122,共13页
Determination of ballistic performance of an armor solution is a complicated task and evolved significantly with the application of finite element methods(FEM) in this research field.The traditional armor design studi... Determination of ballistic performance of an armor solution is a complicated task and evolved significantly with the application of finite element methods(FEM) in this research field.The traditional armor design studies performed with FEM requires sophisticated procedures and intensive computational effort,therefore simpler and accurate numerical approaches are always worthwhile to decrease armor development time.This study aims to apply a hybrid method using FEM simulation and artificial neural network(ANN) analysis to approximate ballistic limit thickness for armor steels.To achieve this objective,a predictive model based on the artificial neural networks is developed to determine ballistic resistance of high hardness armor steels against 7.62 mm armor piercing ammunition.In this methodology,the FEM simulations are used to create training cases for Multilayer Perceptron(MLP) three layer networks.In order to validate FE simulation methodology,ballistic shot tests on 20 mm thickness target were performed according to standard Stanag 4569.Afterwards,the successfully trained ANN(s) is used to predict the ballistic limit thickness of 500 HB high hardness steel armor.Results show that even with limited number of data,FEM-ANN approach can be used to predict ballistic penetration depth with adequate accuracy. 展开更多
关键词 人工神经网络 有限元法 穿透深度 性能测定 高速冲击 有限元模拟 FEM模拟 工具
在线阅读 下载PDF
Artificial Neural Network Applied to Quality Diagnosis
6
作者 Yang Xu(Shandong Architectural and Civil Engineering Institute, Jinan 250014, P. R. ChinaWang Xingyuan(Shandong University of Technology, Jinan 250061, P. R. China) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1997年第2期73-80,共8页
In this paper, we first make a brief review on the fundamental properties of artificial neural networks (ANN) and the basic models, and explore emphatically some potential application of artificial neural networks in ... In this paper, we first make a brief review on the fundamental properties of artificial neural networks (ANN) and the basic models, and explore emphatically some potential application of artificial neural networks in the area of product quality diagnosis, prediction and control, state supervision and classification, factor recognition, and expert system based diagnosis, then set up the ANN models and expert system for quality forecasting, monitoring and diagnosing. We point out that combining ANN with other techniques will have the broad development and application of perspectives. Finally, the paper gives out some practical applications for the models and the system. 展开更多
关键词 artificial neural network (ann) Quality diagnosis Pattern recognition Expert system.
在线阅读 下载PDF
The Application of Artificial Neural Network in Assessing Chinese Mobile Internet Service
7
作者 Zhu Jiachuan 《学术界》 CSSCI 北大核心 2014年第6期282-288,共7页
This paper pays its attention on Chinese mobile Internet service( MIS). Chinese MIS is developing so rapidly that the research on the mechanism of the formation of MIS assessment makes significant sense and therefore ... This paper pays its attention on Chinese mobile Internet service( MIS). Chinese MIS is developing so rapidly that the research on the mechanism of the formation of MIS assessment makes significant sense and therefore the three layers construct of the artificial neural network( ANN) theory is applied to address the problem. The final research model contains MIS features including personalization,localization,reachability,connectivity,convenience and ubiquity as the input layer variables,perceived MIS quality and MIS satisfaction as the hidden layer variables and reuse intention as the output layer variable. MIS risk is identified as the mediating variable. Theoretically,the framework is robust and reveals the mechanism of how customers evaluate a certain mobile Internet service. Practically,the model based on ANN should shed some light on how to understand and improve customer perceived mobile Internet service for both MIS giants and new comers. 展开更多
关键词 人工神经网络 互联网服务 质量管理信息系统 移动 中国 应用 评估 MIS
在线阅读 下载PDF
应用人工智能方法计算致密气藏可采储量——以BP神经网络为例
8
作者 米乃哲 乔向阳 +3 位作者 李旭芬 吕远 许伟 谢小飞 《大庆石油地质与开发》 北大核心 2025年第3期70-76,共7页
针对传统可采储量计算条件苛刻,尤其致密气藏可采储量计算存在工作量大、计算误差大,测试资料不完整的气井不能有效计算的问题。采用人工智能方法计算可采储量,其过程可以看作在气田大数据基础上利用模型、算法与算力为可采储量计算提... 针对传统可采储量计算条件苛刻,尤其致密气藏可采储量计算存在工作量大、计算误差大,测试资料不完整的气井不能有效计算的问题。采用人工智能方法计算可采储量,其过程可以看作在气田大数据基础上利用模型、算法与算力为可采储量计算提供产品、服务、应用,将人工智能具有的解决数据模糊问题、高效协调能力、强学习能力和非线性能力的优势用于可采储量计算。将资料完整准确气井计算可采储量作为学习样本;利用气藏地质和动态研究成果初选计算参数,灰色关联遴选最终计算参数;通过人工智能训练学习建立最终参数与可采储量间关系,应用建立的关系完成其他气井可采储量的计算。应用于延安气田Y50井区,单井验证误差范围-1.88%~4.80%,多井累计误差为1.13%。实践表明,应用人工智能方法计算可采储量可以满足工程计算需要,可大幅度提高计算效率,节约人工成本,降低测试费用,无测试资料和资料不完整气井也可完成可采储量的计算。 展开更多
关键词 致密气藏 可采储量 人工智能 bp神经网络
在线阅读 下载PDF
基于BP-ANN与RBF-ANN的钢筋与混凝土黏结强度预测模型研究 被引量:4
9
作者 李涛 刘喜 +1 位作者 李振军 赵小琴 《南京工业大学学报(自然科学版)》 CAS 北大核心 2024年第1期112-118,共7页
为研究神经网络对钢筋与混凝土黏结强度的预测能力以及神经网络的输出性能,基于大量的试验数据,提出一种基于改进神经网络的变形钢筋与混凝土黏结强度预测模型,对混凝土结构的研究与实际工程应用均有着重要的意义。收集290组黏结锚固试... 为研究神经网络对钢筋与混凝土黏结强度的预测能力以及神经网络的输出性能,基于大量的试验数据,提出一种基于改进神经网络的变形钢筋与混凝土黏结强度预测模型,对混凝土结构的研究与实际工程应用均有着重要的意义。收集290组黏结锚固试验数据,引入基于反向传播人工神经网络(BP-ANN)与径向基函数神经网络(RBF-ANN)算法,揭示混凝土强度、保护层厚度、钢筋直径、锚固长度及配箍率对变形钢筋与混凝土黏结性能的影响规律,建立基于改进神经网络算法的钢筋与混凝土黏结强度预测模型。对比分析不同数据预处理方法和训练神经元个数对建议模型预测结果的影响,评估各经典模型与建议模型的预测精度和离散性,提出临界锚固长度计算公式。结果表明:BP-ANN预测值与试验值比值的均值、标准差及变异系数分别为1.009、0.188、0.86,其预测精度略高于RBF-ANN;建议模型能够更准确、更稳定地预测钢筋与混凝土的黏结强度,该方法为解决钢筋与混凝土黏结问题提供了新思路。 展开更多
关键词 钢筋混凝土 黏结强度 改进神经网络 影响参数 预测模型 黏结锚固试验 bp-ann RBF-ann
在线阅读 下载PDF
基于改进灰狼优化BP网络的城中村火灾预测
10
作者 吕淑然 田江雪 党鑫宇 《中国安全科学学报》 北大核心 2025年第8期196-204,共9页
为了预防城中村火灾,利用改进灰狼优化算法(IGWO)和反向传播(BP)神经网络,对城中村火灾风险进行预测。引入非线性收敛因子和变异算子,改进传统灰狼优化算法(GWO),提高算法的全局搜索能力、收敛速度和稳定性,进而构建基于IGWO优化BP神经... 为了预防城中村火灾,利用改进灰狼优化算法(IGWO)和反向传播(BP)神经网络,对城中村火灾风险进行预测。引入非线性收敛因子和变异算子,改进传统灰狼优化算法(GWO),提高算法的全局搜索能力、收敛速度和稳定性,进而构建基于IGWO优化BP神经网络的城中村火灾风险预测模型(IGWO-BP),结合城中村火灾风险因素的复杂性和特殊性制定指标体系,预测火灾风险,并进行实例验证。结果表明:相较于传统GWO、粒子群算法(PSO)、长城算法(GWCA),IGWO在全局搜索能力、收敛速度和稳定性等方面均有显著提升,IGWO-BP模型可通过处理城中村火灾风险指标,实现对火灾风险的预测。 展开更多
关键词 改进灰狼优化算法(IGWO) 反向传播(bp)神经网络 城中村火灾 风险预测 变异算子 高维函数
在线阅读 下载PDF
贝叶斯正则化优化BP神经网络估算SOH 被引量:2
11
作者 朱聪聪 郭晟 +1 位作者 常海涛 路密 《电池》 北大核心 2025年第1期25-31,共7页
为提高锂离子电池健康状态(SOH)估算的精度,采用基于贝叶斯正则化算法优化的反向传播(BP)神经网络模型。该模型的核心是,引入先验分布约束BP网络权重参数,以减少过拟合风险;并引入后验分布评估参数的不确定性,提升模型对数据噪声的适应... 为提高锂离子电池健康状态(SOH)估算的精度,采用基于贝叶斯正则化算法优化的反向传播(BP)神经网络模型。该模型的核心是,引入先验分布约束BP网络权重参数,以减少过拟合风险;并引入后验分布评估参数的不确定性,提升模型对数据噪声的适应性。以充电全过程提取健康特征验证模型精度;以放电片段数据提取健康特征模拟实际工况。训练后的模型在充电全过程提取特征时的均方根误差(RMSE)和平均绝对误差(MAE)均小于1.65%,采用放电片段提取特征时的RMSE和MAE均小于3.85%,相较于未优化的BP神经网络,两种方式的估算误差分别降低18%和41%以上。 展开更多
关键词 锂离子电池 健康状态(SOH) 贝叶斯正则化算法 反向传播(bp)神经网络 健康特征 先验分布 后验分布
在线阅读 下载PDF
基于PSO-BP神经网络模型的浸胶竹束干燥过程含水率预测
12
作者 王晓曼 吕建雄 +5 位作者 李贤军 吴义强 李新功 郝晓峰 乔建政 徐康 《林业科学》 北大核心 2025年第5期187-198,共12页
【目的】利用人工神经网络模型预测浸胶竹束干燥过程含水率变化,揭示干燥温度、干燥时间、铺装方式和初始含水率对浸胶竹束干燥过程含水率变化的影响规律,为浸胶竹束高质高效干燥提供参考依据。【方法】基于浸胶竹束干燥过程含水率实测... 【目的】利用人工神经网络模型预测浸胶竹束干燥过程含水率变化,揭示干燥温度、干燥时间、铺装方式和初始含水率对浸胶竹束干燥过程含水率变化的影响规律,为浸胶竹束高质高效干燥提供参考依据。【方法】基于浸胶竹束干燥过程含水率实测数据,以干燥温度、干燥时间、铺装方式和初始含水率为输入变量,干燥过程含水率为输出变量,制作数据集。将数据集划分为训练集(308个测试数据,占总数据量的70%)、验证集(66个测试数据,占总数据量的15%)和测试集(66个测试数据,占总数据量的15%),采用粒子群优化算法(PSO)优化反向传播(BP)神经网络初始权重与阈值,构建PSO-BP神经网络预测模型,并进行验证分析。【结果】PSO-BP神经网络模型具有较强的预测能力,在模型测试集中,决定系数(R^(2))、均方误差(MSE)、平均绝对误差(MAE)和剩余预测残差(RPD)分别达0.98、1.27、3.73和7.96。相较BP神经网络,PSO-BP神经网络的R^(2)和RPD分别提高6.53%和110.2%,MSE和MAE分别降低54.0%和71.86%。模型验证表明,干燥温度和铺装方式是影响浸胶竹束干燥过程含水率变化的主要因素,二者对PSO-BP神经网络模型预测结果影响显著。干燥温度为60℃时,在4种不同铺装方式下PSO-BP神经网络模型展现出较好预测效果,其R^(2)均超过0.969且MSE均低于3;铺装层数为3时,在4种不同干燥温度下PSO-BP神经网络模型表现最佳,其R^(2)均超过0.99且MSE均低于2。干燥时间和浸胶竹束初始含水率对PSO-BP神经网络模型预测结果影响不显著。【结论】PSO-BP神经网络模型在浸胶竹束干燥过程含水率预测中表现出准确性,可有效解决传统BP神经网络预测误差大、收敛速度慢等问题,为浸胶竹束高质高效干燥提供技术支撑。 展开更多
关键词 浸胶竹束 干燥 含水率 粒子群优化算法 反向传播 神经网络
在线阅读 下载PDF
基于ABC-BP神经网络的飞机防滑刹车系统故障诊断
13
作者 王强 娄华语 +4 位作者 周国强 吴伟 马长胜 邱荣贤 王良模 《江苏大学学报(自然科学版)》 北大核心 2025年第6期699-704,共6页
针对某飞机防滑刹车系统故障试验的复杂性、危险性以及试验成本高的问题,提出基于人工蜂群算法(ABC)优化BP神经网络的飞机防滑刹车系统故障诊断方法.基于MATLAB/Simulink软件,建立由机体动力学模型、机轮转动模型、电液伺服阀和刹车装... 针对某飞机防滑刹车系统故障试验的复杂性、危险性以及试验成本高的问题,提出基于人工蜂群算法(ABC)优化BP神经网络的飞机防滑刹车系统故障诊断方法.基于MATLAB/Simulink软件,建立由机体动力学模型、机轮转动模型、电液伺服阀和刹车装置模型等组成的飞机防滑刹车系统仿真模型;确定电液伺服阀和轮速传感器典型故障模式,建立故障注入模块;通过轮速传感器和电液伺服阀的典型故障仿真模拟,得到故障数据样本.采用滑动窗口裁剪的方法对样本进行数据增强,建立故障数据集;采用优化前后的BP神经网络进行飞机防滑刹车系统的故障诊断.结果表明:采用ABC算法对BP神经网络优化后的系统平均故障诊断准确率为95.4%(优化前为92.7%),湿跑道传感器故障诊断的准确率为83.9%(优化前为74.5%),可见通过优化有效提升了飞机防滑刹车系统故障诊断准确率. 展开更多
关键词 飞机防滑刹车系统 故障诊断 故障注入 bp神经网络 数据增强 人工蜂群算法
在线阅读 下载PDF
基于BBD和RSM/ANN-Pareto建模的微细粒锡石浮选试验优化
14
作者 张胜东 赵瑜 +2 位作者 王晓 童雄 谢贤 《中国有色金属学报》 北大核心 2025年第9期3216-3235,共20页
微细粒锡石浮选过程中多因素耦合效应复杂,传统单因素优化存在显著局限性。本文以云南某低品位微细粒锡石矿为研究对象,通过4因素3水平Box-Behnken试验设计(BBD),考察4种药剂用量对浮选指标的影响,基于BBD试验结果分别采用响应曲面法(R... 微细粒锡石浮选过程中多因素耦合效应复杂,传统单因素优化存在显著局限性。本文以云南某低品位微细粒锡石矿为研究对象,通过4因素3水平Box-Behnken试验设计(BBD),考察4种药剂用量对浮选指标的影响,基于BBD试验结果分别采用响应曲面法(RSM)和人工神经网络-帕累托优化算法(ANNPareto)实现建模优化。结果表明:ANN-Pareto在拟合精度和预测能力方面均显著优于RSM,RSM则在规律揭示方面更具优势。在闭路试验中,RSM优化取得锡品位6.81%、锡回收率69.06%的指标,ANNPareto优化取得锡品位7.04%、锡回收率73.12%的指标。相较于单因素条件试验,RSM和ANN-Pareto优化在保持锡品位基本不变的情况下分别获得2.26和6.34个百分点的锡回收率提升。BBD/RSM/ANN-Pareto耦合模型方法能有效整合试验设计、交互作用揭示与指标优化,可在微细粒锡石浮选优化中发挥显著作用。 展开更多
关键词 微细粒锡石浮选 BOX-BEHNKEN设计 响应曲面法 人工神经网络 PARETO优化
在线阅读 下载PDF
改进KPCA结合多目标蜻蜓算法优化BP神经网络的联合收割机故障诊断
15
作者 孟桐 雷鸣 +2 位作者 宋文广 王丹丹 黄梦可 《机电工程》 北大核心 2025年第7期1258-1267,共10页
针对联合收割机数据维度高、诊断效果不理想的问题,提出了一种改进核主成分分析(KPCA)结合多目标蜻蜓算法(MTDA)优化反向传播(BP)神经网络的联合收割机故障诊断方法。首先,采用Morlet小波作为KPCA的核函数,其融合了高斯包络与正弦波特性... 针对联合收割机数据维度高、诊断效果不理想的问题,提出了一种改进核主成分分析(KPCA)结合多目标蜻蜓算法(MTDA)优化反向传播(BP)神经网络的联合收割机故障诊断方法。首先,采用Morlet小波作为KPCA的核函数,其融合了高斯包络与正弦波特性,能够有效捕捉收割机的瞬态变化与局部异常,从而提取出了不同工况下的主要成分,降低了数据维度,减少了冗余信息;其次,针对传统蜻蜓算法的局限性,引入了自适应变异策略、非线性惯性权重及动态收敛因子,构建了多目标蜻蜓算法,对Schaffer、Michalewicz和Rastrigin函数进行了求解,验证了MTDA能显著提升全局与局部搜索平衡能力;最后,利用MTDA对BP神经网络的权值和阈值进行了优化,构建了MTDA-BP综合故障诊断模型,将模型应用于联合收割机的故障诊断中,通过实验验证了其有效性。研究结果表明:故障诊断平均精度达到96.7%,通过与当前主流方法的实验对比分析,采用Micro-average ROC进行了模型评价,结果显示该模型的曲线下面积(AUC)为0.967。实验结果充分证明了该模型在检测精确度与泛化性方面均具有显著优势,该研究也为解决智能农业机械中的诊断提供了一种有效的方法。 展开更多
关键词 核主成分分析 MORLET小波 多目标蜻蜓算法 反向传播神经网络 联合收割机 故障诊断
在线阅读 下载PDF
基于改进NNA和BP神经网络模型的深基坑沉降预测
16
作者 王仁志 张伟国 +3 位作者 寇苗苗 刘飞 王金涛 张拥军 《科学技术与工程》 北大核心 2025年第24期10416-10425,共10页
为更精准预测基坑开挖卸荷引起的周边地表沉降,通过改进神经网络算法(neural network algorithm, NNA),提出一种具有信息反馈和反向学习机制的神经网络优化算法(neural network algorithm with feedback mechanism and reverse learning... 为更精准预测基坑开挖卸荷引起的周边地表沉降,通过改进神经网络算法(neural network algorithm, NNA),提出一种具有信息反馈和反向学习机制的神经网络优化算法(neural network algorithm with feedback mechanism and reverse learning, FBRLNNA),并结合反向传播(back propagation, BP)神经网络构建地表沉降预测模型,将提出的沉降预测模型在青岛15号线地铁工程基坑中进行应用与验证。基于18种基准函数比较FBRLNNA与9种竞争优化算法的表现,仿真试验表明,FBRLNNA在80%的基础基准函数上均表现出更优的性能。对比分析FBRLNNA-BP模型及其他4种模型的基坑沉降预测结果,FBRLNNA-BP模型的均方误差(mean squared error, MSE)、平均绝对误差(mean absolute error, MAE)、均方根误差(root mean square error, RMSE)及决定系数(R^(2))均最佳,沉降预测结果误差小于5%,表明该预测模型具有更好的沉降预测精度。研究成果可为基坑开挖引发的地表沉降预测提供了新的方法和参考。 展开更多
关键词 具有信息反馈和反向学习机制的神经网络优化算法(FBRLNNA) 反向传播(bp)神经网络 FBRLNNA-bp模型 基坑开挖 沉降预测
在线阅读 下载PDF
基于BOA-BP神经网络的四旋翼飞行器路径优化 被引量:1
17
作者 王舒玮 李嘉 +1 位作者 冯健 岳彩宾 《现代防御技术》 北大核心 2025年第3期74-81,共8页
针对四旋翼飞行器在多障碍物环境中飞行时容易出现路径规划不准确的问题,提出了基于蝴蝶算法(BOA)的BP神经网络优化方法。将四旋翼飞行器在设定路径中的所有途经点作为神经网络的训练样本,通过BOA-BP算法对神经网络进行训练,从而确定了... 针对四旋翼飞行器在多障碍物环境中飞行时容易出现路径规划不准确的问题,提出了基于蝴蝶算法(BOA)的BP神经网络优化方法。将四旋翼飞行器在设定路径中的所有途经点作为神经网络的训练样本,通过BOA-BP算法对神经网络进行训练,从而确定了最佳飞行路径。仿真结果表明,与传统的BOA算法相比,所提出的BOA-BP算法模型可以有效减小四旋翼飞行器路径的误差,均方根误差可从1.60%降低到0.003%。 展开更多
关键词 四旋翼 飞行器 蝴蝶优化算法 bp神经网络 路径优化 训练样本 误差处理
在线阅读 下载PDF
基于正交试验-BP神经网络的孔入式液体静压轴承数值分析与预测
18
作者 王永权 尹洋 《机床与液压》 北大核心 2025年第20期44-51,共8页
针对孔入式液体静压轴承在多物理场耦合工况下温升预测精度不足及参数作用机制不明确的问题,提出一种融合CFD仿真、正交试验与BP神经网络的多尺度分析方法,旨在揭示关键参数的交互作用规律,实现复杂工况下的性能快速预测与优化。为此建... 针对孔入式液体静压轴承在多物理场耦合工况下温升预测精度不足及参数作用机制不明确的问题,提出一种融合CFD仿真、正交试验与BP神经网络的多尺度分析方法,旨在揭示关键参数的交互作用规律,实现复杂工况下的性能快速预测与优化。为此建立轴承油膜三维流场数学模型,通过数值模拟获取不同参数组合下的承载力、质量流量及温升数据;设计四因素四水平正交试验,结合极差分析量化主轴转速、供油压力、供油温度及油膜偏心率对性能指标的敏感性;基于正交试验样本构建四输入单输出的BP神经网络预测模型,通过数据归一化、隐含层节点优化及L-M算法训练等提升模型泛化能力;搭建试验系统平台测量轴承油膜温升。结果表明:主轴转速对温升影响最显著;构建的BP模型预测误差低于5%,供油压力每提升1000 Pa可补偿转速1 r/min引起的温升,且供油温度在低压工况下易引发超线性温升效应;仿真及预测值与实际值的最大误差低于10%,证实了所提方法的准确性。 展开更多
关键词 孔入式液体静压轴承 CFD仿真 正交试验 bp神经网络
在线阅读 下载PDF
基于KNN-BP神经网络车辆驻留时间预测立体车库RGV待命位策略
19
作者 后国栋 李建国 《科学技术与工程》 北大核心 2025年第24期10478-10486,共9页
平面移动式立体车库待命位策略可以提高车辆出库效率,减少顾客等待时间,通过预测库内车辆出库时间节点,设计分区待命位策略。针对反向传播(back propagation, BP)神经网络存在样本依赖性较强的特点,提出一种K-近邻算法(k-nearest neighb... 平面移动式立体车库待命位策略可以提高车辆出库效率,减少顾客等待时间,通过预测库内车辆出库时间节点,设计分区待命位策略。针对反向传播(back propagation, BP)神经网络存在样本依赖性较强的特点,提出一种K-近邻算法(k-nearest neighbor, KNN)-BP神经网络预测模型,以是否为工作日、工作日特殊时段(如早高峰、晚高峰),气温,降水4个方面作为特征向量,采用二进制集合转换构建各特征向量集,通过KNN对异常数据进行分组,提高BP神经网络预测精度,并基于预测时间建立出库概率分布,设定区域优先级参数以及RGV(rail guided vehicle)待命位策略。编写仿真程序,以西安小寨某商用立体车库运行数据进行验证,仿真结果表明:KNN-BP神经网络预测模型R^(2)较传统BP神经网络提高了20.23%,设计待命位策略下较无待命位策略顾客平均等待时间减小35.82%,RGV平均服务时间降低39.51%,RGV运行能耗降低38.32%;较文献引用策略顾客平均等待时间减小14.18%,RGV平均服务时间降低13.29%,RGV运行能耗降低20.89%。研究成果为提高立体车库车运行效率提供参考。 展开更多
关键词 交通工程 立体车库 待命位 K-近邻算法(KNN)-反向传播(bp)神经网络 RGV
在线阅读 下载PDF
基于GWO-BP模型与MOMPA算法的插秧机车架轻量化设计 被引量:1
20
作者 陈岁繁 侯万森 +3 位作者 张浩南 李其朋 夏琪玮 陈问池 《机电工程》 北大核心 2025年第5期933-944,共12页
为实现水稻插秧机车架的轻量化目标,提出了基于灰狼优化反向传播神经网络(GWO-BP)模型与多目标海洋捕食者算法(MOMPA)的联合优化方法。首先,对GWO-BP模型与MOMPA优化算法的构建进行了理论分析,建立了车架的三维模型和有限元模型,并对其... 为实现水稻插秧机车架的轻量化目标,提出了基于灰狼优化反向传播神经网络(GWO-BP)模型与多目标海洋捕食者算法(MOMPA)的联合优化方法。首先,对GWO-BP模型与MOMPA优化算法的构建进行了理论分析,建立了车架的三维模型和有限元模型,并对其性能进行了仿真;然后,采用灵敏度分析确定了可作为优化设计变量的8个主要结构参数,并利用实验设计的方法计算出设计变量与目标参数之间响应关系的数据,从而建立了GWO-BP近似模型,联合近似模型与MOMPA优化算法,以车架质量、最大变形最小为优化目标,求出了轻量化车架的最优结构参数组合;最后,对车架优化结果进行了验证,同时,分析了车架模态性能,并建立了车架样机,通过试验验证了车架轻量化结果。研究结果表明:车架质量、车架最大变形和最大等效应力的拟合精度分别为0.998 8、0.987 8、0.986 7,建立的近似模型具有较高精度;优化后车架质量比原车架降低了9.26%;优化结果与仿真结果误差在2%以内,且优化后车架固有频率可以有效避开外界激励,通过对比优化前后车架质量及性能,确定了优化结果的准确性与有效性;根据优化结果制造了轻量化车架的样机,其整体质量较原车架减轻了10.3%,达到了良好的轻量化效果,为农机车架轻量化研究提供了一定的借鉴。 展开更多
关键词 水稻插秧机 轻量化 灰狼优化反向传播神经网络 多目标海洋捕食者优化算法 车架模态分析
在线阅读 下载PDF
上一页 1 2 94 下一页 到第
使用帮助 返回顶部