Advertising avoidance is resistance to advertising intrusion.This issue has been the subject of much academic research in recent years.To guide scholars to better carry out relevant research and promote enterprises to...Advertising avoidance is resistance to advertising intrusion.This issue has been the subject of much academic research in recent years.To guide scholars to better carry out relevant research and promote enterprises to better implement advertising activities,this study intends to summarize the relevant research on advertising avoidance in recent years.The specific method is to use the core literature meta-analysis method to identify,filter,and screen relevant literature published in core journals from 1997 to 2020 with the keywords advertising avoidance and advertising resistance.We review the collected articles from the following perspectives:the definition and classification,external stimulating factors,internal perception factors,and moderating factors of advertising avoidance.On this basis,the SOMR model of advertising avoidance is constructed according to the SOR model.Finally,some prospects for future related research are presented.展开更多
Multiple quadrotors target encirclement is widely used in the intelligent field,as it can effectively monitor and control target behavior.However,it faces the danger of collision,as well as difficulties in localizatio...Multiple quadrotors target encirclement is widely used in the intelligent field,as it can effectively monitor and control target behavior.However,it faces the danger of collision,as well as difficulties in localization and tracking.Therefore,we propose a complete target encirclement method.Firstly,based on Hooke's law,a collision avoidance controller is designed to maintain a safe flying distance among quadrotors.Then,based on the consensus theory,a formation tracking controller is designed to meet the requirements of formation transformation and encirclement tasks,and a stability proof based on Lyapunov was provided.Besides,the target detection is designed based on YOLOv5s,and the target location model is constructed based on the principle of pinhole projection and triangle similarity.Finally,we conducted experiments on the built platform,with 3 reconnaissance quadrotors detecting and localization 3 target vehicles and 7 hunter quadrotors tracking them.The results show that the minimum average error for localization targets with reconnaissance quadrotors can reach 0.1354 m,while the minimum average error for tracking with hunter quadrotors is only 0.2960 m.No quadrotors collision occurred in the whole formation transformation and tracking experiment.In addition,compared with the advanced methods,the proposed method has better performance.展开更多
In the realm of missile defense systems,the self-sufficient maneuver capacity of missile swarms is pivotal for their survival.Through the analysis of the missile dynamics model,a time-efficient cooperative attack stra...In the realm of missile defense systems,the self-sufficient maneuver capacity of missile swarms is pivotal for their survival.Through the analysis of the missile dynamics model,a time-efficient cooperative attack strategy for missile swarm is proposed.Based on the distribution of the attackers and defenders,the collision avoidance against the defenders is considered during the attack process.By analyzing the geometric relationship between the relative velocity vector and relative position vector of the attackers and defenders,the collision avoidance constrains of attacking swarm are redefined.The key point is on adjusting the relative velocity vectors to fall outside the collision cone.This work facilitates high-precision attack toward the target while keeping safe missing distance between other attackers during collision avoidance process.By leveraging an innovative repulsion artificial function,a time-efficient cooperative attack strategy for missile swarm is obtained.Through rigorous simulation,the effectiveness of this cooperative attack strategy is substantiated.Furthermore,by employing Monte Carlo simulation,the success rate of the cooperative attack strategy is assessesed and the optimal configuration for the missile swarm is deduced.展开更多
A differential game guidance scheme with obstacle avoidance,based on the formulation of a combined linear quadratic and norm-bounded differential game,is designed for a three-player engagement scenario,which includes ...A differential game guidance scheme with obstacle avoidance,based on the formulation of a combined linear quadratic and norm-bounded differential game,is designed for a three-player engagement scenario,which includes a pursuer,an interceptor,and an evader.The confrontation between the players is divided into four phases(P1-P4)by introducing the switching time,and proposing different guidance strategies according to the phase where the static obstacle is located:the linear quadratic game method is employed to devise the guidance scheme for the energy optimization when the obstacle is located in the P1 and P3 stages;the norm-bounded differential game guidance strategy is presented to satisfy the acceleration constraint under the circumstance that the obstacle is located in the P2 and P4 phases.Furthermore,the radii of the static obstacle and the interceptor are taken as the design parameters to derive the combined guidance strategy through the dead-zone function,which guarantees that the pursuer avoids the static obstacle,and the interceptor,and attacks the evader.Finally,the nonlinear numerical simulations verify the performance of the game guidance strategy.展开更多
According to the characteristic of cruise missiles,navigation point setting is simplified,and the principle of route planning for saturation attack and a concept of reference route are put forward.With the help of the...According to the characteristic of cruise missiles,navigation point setting is simplified,and the principle of route planning for saturation attack and a concept of reference route are put forward.With the help of the shortest-tangent idea in route-planning and the algorithm of back reasoning from targets,a reference route algorithm is built on the shortest range and threat avoidance.Then a route-flight-time algorithm is built on navigation points.Based on the conditions of multi-direction saturation attack,a route planning algorithm of multi-direction saturation attack is built on reference route,route-flight-time,and impact azimuth.Simulation results show that the algorithm can realize missiles fired in a salvo launch reaching the target simultaneously from different directions while avoiding threat.展开更多
Cooperative path planning is an important area in fixed-wing UAV swarm.However,avoiding multiple timevarying obstacles and avoiding local optimum are two challenges for existing approaches in a dynamic environment.Fir...Cooperative path planning is an important area in fixed-wing UAV swarm.However,avoiding multiple timevarying obstacles and avoiding local optimum are two challenges for existing approaches in a dynamic environment.Firstly,a normalized artificial potential field optimization is proposed by reconstructing a novel function with anisotropy in each dimension,which can make the flight speed of a fixed UAV swarm independent of the repulsive/attractive gain coefficient and avoid trapping into local optimization and local oscillation.Then,taking into account minimum velocity and turning angular velocity of fixed-wing UAV swarm,a strategy of decomposing target vector to avoid moving obstacles and pop-up threats is proposed.Finally,several simulations are carried out to illustrate superiority and effectiveness.展开更多
To solve dynamic obstacle avoidance problems, a novel algorithm was put forward with the advantages of wireless sensor network (WSN). In view of moving velocity and direction of both the obstacles and robots, a mathem...To solve dynamic obstacle avoidance problems, a novel algorithm was put forward with the advantages of wireless sensor network (WSN). In view of moving velocity and direction of both the obstacles and robots, a mathematic model was built based on the exposure model, exposure direction and critical speeds of sensors. Ant colony optimization (ACO) algorithm based on bionic swarm intelligence was used for solution of the multi-objective optimization. Energy consumption and topology of the WSN were also discussed. A practical implementation with real WSN and real mobile robots were carried out. In environment with multiple obstacles, the convergence curve of the shortest path length shows that as iterative generation grows, the length of the shortest path decreases and finally reaches a stable and optimal value. Comparisons show that using sensor information fusion can greatly improve the accuracy in comparison with single sensor. The successful path of robots without collision validates the efficiency, stability and accuracy of the proposed algorithm, which is proved to be better than tradition genetic algorithm (GA) for dynamic obstacle avoidance in real time.展开更多
Focusing on obstacle avoidance in three-dimensional space for unmanned aerial vehicle(UAV), the direct obstacle avoidance method in dynamic space based on three-dimensional velocity obstacle spherical cap is proposed,...Focusing on obstacle avoidance in three-dimensional space for unmanned aerial vehicle(UAV), the direct obstacle avoidance method in dynamic space based on three-dimensional velocity obstacle spherical cap is proposed, which quantifies the influence of threatening obstacles through velocity obstacle spherical cap parameters. In addition, the obstacle avoidance schemes of any point on the critical curve during the multi-obstacles avoidance are given. Through prediction, the insertion point for the obstacle avoidance can be obtained and the flight path can be replanned. Taking the Pythagorean Hodograph(PH) curve trajectory re-planning as an example, the three-dimensional direct obstacle avoidance method in dynamic space is tested. Simulation results show that the proposed method can realize the online obstacle avoidance trajectory re-planning, which increases the flexibility of obstacle avoidance greatly.展开更多
Abnormal movement states for a mobile robot were identified by four multi-layer perceptron. In the presence ot abnormality, avoidance strategies were designed to guarantee the safety of the robot. Firstly, the kinemat...Abnormal movement states for a mobile robot were identified by four multi-layer perceptron. In the presence ot abnormality, avoidance strategies were designed to guarantee the safety of the robot. Firstly, the kinematics of the normal and abnormal movement states were exploited, 8 kinds of features were extracted. Secondly, 4 multi-layer pereeptrons were employed to classify the features for four 4-driving wheels into 4 kinds of states, i.e. normal, blocked, deadly blocked, and slipping. Finally, avoidance strategies were designed based on this. Experiment results show that the methods can identify most abnormal movement states and avoid the abnormality correctly and timely.展开更多
The guidance strategy is an extremely critical factor in determining the striking effect of the missile operation.A novel guidance law is presented by exploiting the deep reinforcement learning(DRL)with the hierarchic...The guidance strategy is an extremely critical factor in determining the striking effect of the missile operation.A novel guidance law is presented by exploiting the deep reinforcement learning(DRL)with the hierarchical deep deterministic policy gradient(DDPG)algorithm.The reward functions are constructed to minimize the line-of-sight(LOS)angle rate and avoid the threat caused by the opposed obstacles.To attenuate the chattering of the acceleration,a hierarchical reinforcement learning structure and an improved reward function with action penalty are put forward.The simulation results validate that the missile under the proposed method can hit the target successfully and keep away from the threatened areas effectively.展开更多
This paper presents a quadcopter system for naviga-tion in outdoor urban environments.The main contributions include the hardware design,the establishment of global occu-pancy grid maps based on millimeter-wave radars...This paper presents a quadcopter system for naviga-tion in outdoor urban environments.The main contributions include the hardware design,the establishment of global occu-pancy grid maps based on millimeter-wave radars,the trajec-tory planning scheme based on optimal virtual tube methods,and the controller structure based on dynamics.The proposed system focuses on utilizing a compact and lightweight quadro-tor with sensors to achieve navigation that conforms to the direction of urban roads with high computational efficiency and safety.Our work is an application of millimeter-wave radars and virtual tube planning for obstacle avoidance in navigation.The validness and effectiveness of the proposed system are verified by experiments.展开更多
A three-dimensional path-planning approach has been developed to coordinate multiple fixed-wing unmanned aerial vehicles(UAVs)while avoiding collisions.The hierarchical path-planning architecture that divides the path...A three-dimensional path-planning approach has been developed to coordinate multiple fixed-wing unmanned aerial vehicles(UAVs)while avoiding collisions.The hierarchical path-planning architecture that divides the path-planning process into two layers is proposed by designing the velocityobstacle strategy for satisfying timeliness and effectiveness.The upper-level layer focuses on creating an efficient Dubins initial path considering the dynamic constraints of the fixed wing.Subsequently,the lower-level layer detects potential collisions and adjusts its flight paths to avoid collisions by using the threedimensional velocity obstacle method,which describes the maneuvering space of collision avoidance as the intersection space of half space.To further handle the dynamic and collisionavoidance constraints,a priority mechanism is designed to ensure that the adjusted path is still feasible for fixed-wing UAVs.Simulation experiments demonstrate the effectiveness of the proposed method.展开更多
Autonomous mobile robot navigation is one of the most emerging areas of research by using swarm intelligence. Path planning and obstacle avoidance are most researched current topics like navigational challenges for mo...Autonomous mobile robot navigation is one of the most emerging areas of research by using swarm intelligence. Path planning and obstacle avoidance are most researched current topics like navigational challenges for mobile robot. The paper presents application and implementation of Firefly Algorithm(FA)for Mobile Robot Navigation(MRN) in uncertain environment. The uncertainty is defined over the changing environmental condition from static to dynamic. The attraction of one firefly towards the other firefly due to variation of their brightness is the key concept of the proposed study. The proposed controller efficiently explores the environment and improves the global search in less number of iterations and hence it can be easily implemented for real time obstacle avoidance especially for dynamic environment. It solves the challenges of navigation, minimizes the computational calculations, and avoids random moving of fireflies. The performance of proposed controller is better in terms of path optimality when compared to other intelligent navigational approaches.展开更多
A critical safe distance(CSD)model in V2V(vehicle-to-vehicle)communication systems was proposed to primarily enhance driving safety by disseminating warning notifications to vehicles when they approach calculated CSD....A critical safe distance(CSD)model in V2V(vehicle-to-vehicle)communication systems was proposed to primarily enhance driving safety by disseminating warning notifications to vehicles when they approach calculated CSD.By elaborately analyzing the vehicular movement features especially when braking,our CSD definition was introduced and its configuration method was given through dividing radio range into different communication zones.Based on our definition,the needed message propagation delay was also derived which could be used to control the beacon frequency or duration.Next,the detailed CSD expressions were proposed in different mobility scenarios by fully considering the relative movement status between the front and rear vehicles.Numerical results show that our proposed model could provide reasonable CSD under different movement scenarios which eliminates the unnecessary reserved inter-vehicle distance and guarantee the safety at the same time.The compared time-headway model always shows a smaller CSD due to focusing on traffic efficiency whereas the traditional braking model generally outputs a larger CSD because it assumes that the following car drives with a constant speed and did not discuss the scenario when the leading car suddenly stops.Different from these two models,our proposed model could well balances the requirements between driving safety and traffic throughput efficiency by generating a CSD in between the values of the two models in most cases.展开更多
The rapid increase of space debris population has posed serious threaten to the safety of human space activities and became a global issue.How to enhance the technical capabilities of space debris threat coping abilit...The rapid increase of space debris population has posed serious threaten to the safety of human space activities and became a global issue.How to enhance the technical capabilities of space debris threat coping ability is of great significance to the sustainable development of space activities,the further development,and utilization of outer space.In this paper,we describe space debris research progress of China on observation,collision avoidance,protection,mitigation,regulation,and standard during the last twenty years,and look forward to the future development direction of space debris.展开更多
Communication security is a critical aspect of QoS provisioning in wireless mesh network (WMN). Because of the inherent characteristics of WMN, conventional security mechanisms cannot be applied. In order to guarant...Communication security is a critical aspect of QoS provisioning in wireless mesh network (WMN). Because of the inherent characteristics of WMN, conventional security mechanisms cannot be applied. In order to guarantee the communication security, a novel communication security mechanism is proposed. The mechanism uses a communication encryption scheme to encrypt data packets and employs a risk avoidance scheme to avoid the malicious nodes during communications. Simulation results indicate that the mechanism is able to provide secure communication effectively and reduce the damage of attacks through multiple paths.展开更多
In order to avoid severe performance degradation led by the inter-cell interference (ICI) in orthogonal frequency division multiple access (OFDMA) systems with a frequency reused factor (FRF) of 1,distributed schedule...In order to avoid severe performance degradation led by the inter-cell interference (ICI) in orthogonal frequency division multiple access (OFDMA) systems with a frequency reused factor (FRF) of 1,distributed schedule algorithm (DS-OCS) and distributed proportional fairness schedule algorithm (DPFS-OCS) based on orthogonal complement space (OCS) were proposed. The first right and left singular vectors of the channel that the user experienced were selected as the transmitting and receiving beamforming vectors. An interference space was spanned by the left singular vectors of the entire interference users in the same channel. The most suitable user lay in the OCS of the interference space was scheduled to avoid suffering interference from neighboring cells based on the criterion of system capacity maximizing and proportional fairness. The simulation results show that the average system capacity can be improved by 2%-4% compared with the DS-OCS algorithm with the Max C/I algorithm,by 6%-10% compared with the DPFS-OCS algorithm with the PF algorithm.展开更多
In several applications, such as collision avoidance, it is necessary to have a system able to rapidly detect the simultaneous presence of different obstacles. In general, these applications do not require high resolu...In several applications, such as collision avoidance, it is necessary to have a system able to rapidly detect the simultaneous presence of different obstacles. In general, these applications do not require high resolution performance, but it is necessary to assure high system reliability also within critical scenarios, as in the case of partially transparent atmosphere or environment in presence of multiple objects(implying multiple echoes having different delay times.) This paper describes the algorithm, the architecture and the implementation of a digital Light Detection and Ranging(LIDAR) system based on a chirped optical carrier. This technique provides some advantages compared to the pulsed approach, primarily the reduction of the peak power of the laser. In the proposed architecture all the algorithms for signal processing are implemented using digital hardware. In this way, some specific advantages are obtained: improved detection performance(larger dynamics, range and resolution), capability of detecting multiple obstacles having different echoes amplitude, reduction of the noise effects, reduction of the costs, size and weight of the resulting equipment. The improvement provided by this fully digital solution is potentially useful in different applications such as: collision avoidance systems, 3D mapping of environments and, in general, remote sensing systems which need wide distance and dynamics.展开更多
文摘Advertising avoidance is resistance to advertising intrusion.This issue has been the subject of much academic research in recent years.To guide scholars to better carry out relevant research and promote enterprises to better implement advertising activities,this study intends to summarize the relevant research on advertising avoidance in recent years.The specific method is to use the core literature meta-analysis method to identify,filter,and screen relevant literature published in core journals from 1997 to 2020 with the keywords advertising avoidance and advertising resistance.We review the collected articles from the following perspectives:the definition and classification,external stimulating factors,internal perception factors,and moderating factors of advertising avoidance.On this basis,the SOMR model of advertising avoidance is constructed according to the SOR model.Finally,some prospects for future related research are presented.
基金the National Natural Science Foundation of China(Grant Nos.62303348 and 62173242)the Aeronautical Science Foundation of China(Grant No.2024M071048002)the National Science Fund for Distinguished Young Scholars(Grant No.62225308)to provide fund for conducting experiments.
文摘Multiple quadrotors target encirclement is widely used in the intelligent field,as it can effectively monitor and control target behavior.However,it faces the danger of collision,as well as difficulties in localization and tracking.Therefore,we propose a complete target encirclement method.Firstly,based on Hooke's law,a collision avoidance controller is designed to maintain a safe flying distance among quadrotors.Then,based on the consensus theory,a formation tracking controller is designed to meet the requirements of formation transformation and encirclement tasks,and a stability proof based on Lyapunov was provided.Besides,the target detection is designed based on YOLOv5s,and the target location model is constructed based on the principle of pinhole projection and triangle similarity.Finally,we conducted experiments on the built platform,with 3 reconnaissance quadrotors detecting and localization 3 target vehicles and 7 hunter quadrotors tracking them.The results show that the minimum average error for localization targets with reconnaissance quadrotors can reach 0.1354 m,while the minimum average error for tracking with hunter quadrotors is only 0.2960 m.No quadrotors collision occurred in the whole formation transformation and tracking experiment.In addition,compared with the advanced methods,the proposed method has better performance.
基金supported by the Intelligent Aerospace System Leading Innovation Team Program of Zhejiang(2022R01003).
文摘In the realm of missile defense systems,the self-sufficient maneuver capacity of missile swarms is pivotal for their survival.Through the analysis of the missile dynamics model,a time-efficient cooperative attack strategy for missile swarm is proposed.Based on the distribution of the attackers and defenders,the collision avoidance against the defenders is considered during the attack process.By analyzing the geometric relationship between the relative velocity vector and relative position vector of the attackers and defenders,the collision avoidance constrains of attacking swarm are redefined.The key point is on adjusting the relative velocity vectors to fall outside the collision cone.This work facilitates high-precision attack toward the target while keeping safe missing distance between other attackers during collision avoidance process.By leveraging an innovative repulsion artificial function,a time-efficient cooperative attack strategy for missile swarm is obtained.Through rigorous simulation,the effectiveness of this cooperative attack strategy is substantiated.Furthermore,by employing Monte Carlo simulation,the success rate of the cooperative attack strategy is assessesed and the optimal configuration for the missile swarm is deduced.
基金supported by National Natural Science Foundation(NNSF)of China under(Grant No.62273119)。
文摘A differential game guidance scheme with obstacle avoidance,based on the formulation of a combined linear quadratic and norm-bounded differential game,is designed for a three-player engagement scenario,which includes a pursuer,an interceptor,and an evader.The confrontation between the players is divided into four phases(P1-P4)by introducing the switching time,and proposing different guidance strategies according to the phase where the static obstacle is located:the linear quadratic game method is employed to devise the guidance scheme for the energy optimization when the obstacle is located in the P1 and P3 stages;the norm-bounded differential game guidance strategy is presented to satisfy the acceleration constraint under the circumstance that the obstacle is located in the P2 and P4 phases.Furthermore,the radii of the static obstacle and the interceptor are taken as the design parameters to derive the combined guidance strategy through the dead-zone function,which guarantees that the pursuer avoids the static obstacle,and the interceptor,and attacks the evader.Finally,the nonlinear numerical simulations verify the performance of the game guidance strategy.
基金supported by the Aeronautical Science Foundation of China (20085584010)
文摘According to the characteristic of cruise missiles,navigation point setting is simplified,and the principle of route planning for saturation attack and a concept of reference route are put forward.With the help of the shortest-tangent idea in route-planning and the algorithm of back reasoning from targets,a reference route algorithm is built on the shortest range and threat avoidance.Then a route-flight-time algorithm is built on navigation points.Based on the conditions of multi-direction saturation attack,a route planning algorithm of multi-direction saturation attack is built on reference route,route-flight-time,and impact azimuth.Simulation results show that the algorithm can realize missiles fired in a salvo launch reaching the target simultaneously from different directions while avoiding threat.
文摘Cooperative path planning is an important area in fixed-wing UAV swarm.However,avoiding multiple timevarying obstacles and avoiding local optimum are two challenges for existing approaches in a dynamic environment.Firstly,a normalized artificial potential field optimization is proposed by reconstructing a novel function with anisotropy in each dimension,which can make the flight speed of a fixed UAV swarm independent of the repulsive/attractive gain coefficient and avoid trapping into local optimization and local oscillation.Then,taking into account minimum velocity and turning angular velocity of fixed-wing UAV swarm,a strategy of decomposing target vector to avoid moving obstacles and pop-up threats is proposed.Finally,several simulations are carried out to illustrate superiority and effectiveness.
基金Project(60475035) supported by the National Natural Science Foundation of China
文摘To solve dynamic obstacle avoidance problems, a novel algorithm was put forward with the advantages of wireless sensor network (WSN). In view of moving velocity and direction of both the obstacles and robots, a mathematic model was built based on the exposure model, exposure direction and critical speeds of sensors. Ant colony optimization (ACO) algorithm based on bionic swarm intelligence was used for solution of the multi-objective optimization. Energy consumption and topology of the WSN were also discussed. A practical implementation with real WSN and real mobile robots were carried out. In environment with multiple obstacles, the convergence curve of the shortest path length shows that as iterative generation grows, the length of the shortest path decreases and finally reaches a stable and optimal value. Comparisons show that using sensor information fusion can greatly improve the accuracy in comparison with single sensor. The successful path of robots without collision validates the efficiency, stability and accuracy of the proposed algorithm, which is proved to be better than tradition genetic algorithm (GA) for dynamic obstacle avoidance in real time.
基金supported by the Aeronautical Science Foundation of China(20135584010)
文摘Focusing on obstacle avoidance in three-dimensional space for unmanned aerial vehicle(UAV), the direct obstacle avoidance method in dynamic space based on three-dimensional velocity obstacle spherical cap is proposed, which quantifies the influence of threatening obstacles through velocity obstacle spherical cap parameters. In addition, the obstacle avoidance schemes of any point on the critical curve during the multi-obstacles avoidance are given. Through prediction, the insertion point for the obstacle avoidance can be obtained and the flight path can be replanned. Taking the Pythagorean Hodograph(PH) curve trajectory re-planning as an example, the three-dimensional direct obstacle avoidance method in dynamic space is tested. Simulation results show that the proposed method can realize the online obstacle avoidance trajectory re-planning, which increases the flexibility of obstacle avoidance greatly.
基金Project (60234030) supported by the National Natural Science Foundation of China
文摘Abnormal movement states for a mobile robot were identified by four multi-layer perceptron. In the presence ot abnormality, avoidance strategies were designed to guarantee the safety of the robot. Firstly, the kinematics of the normal and abnormal movement states were exploited, 8 kinds of features were extracted. Secondly, 4 multi-layer pereeptrons were employed to classify the features for four 4-driving wheels into 4 kinds of states, i.e. normal, blocked, deadly blocked, and slipping. Finally, avoidance strategies were designed based on this. Experiment results show that the methods can identify most abnormal movement states and avoid the abnormality correctly and timely.
基金supported by the National Natural Science Foundation of China(62003021,91212304).
文摘The guidance strategy is an extremely critical factor in determining the striking effect of the missile operation.A novel guidance law is presented by exploiting the deep reinforcement learning(DRL)with the hierarchical deep deterministic policy gradient(DDPG)algorithm.The reward functions are constructed to minimize the line-of-sight(LOS)angle rate and avoid the threat caused by the opposed obstacles.To attenuate the chattering of the acceleration,a hierarchical reinforcement learning structure and an improved reward function with action penalty are put forward.The simulation results validate that the missile under the proposed method can hit the target successfully and keep away from the threatened areas effectively.
基金supported by the National Natural Science Foundation of China(61473147)the Funding of Jiangsu Innovation Program for Graduated Education(KYLX16-0376)the Funding for Outstanding Doctoral Dissertation in NUAA(BCXJ16-02)
基金supported by the National Key Research and Development Program of China(2022YFA1004703)the National Natural Science Foundation of China(62088101).
文摘This paper presents a quadcopter system for naviga-tion in outdoor urban environments.The main contributions include the hardware design,the establishment of global occu-pancy grid maps based on millimeter-wave radars,the trajec-tory planning scheme based on optimal virtual tube methods,and the controller structure based on dynamics.The proposed system focuses on utilizing a compact and lightweight quadro-tor with sensors to achieve navigation that conforms to the direction of urban roads with high computational efficiency and safety.Our work is an application of millimeter-wave radars and virtual tube planning for obstacle avoidance in navigation.The validness and effectiveness of the proposed system are verified by experiments.
基金supported by the National Science Fund for Distinguished Young Scholars(52425211)BIT Research Fund Program for Young Scholars(XSQD-202201005).
文摘A three-dimensional path-planning approach has been developed to coordinate multiple fixed-wing unmanned aerial vehicles(UAVs)while avoiding collisions.The hierarchical path-planning architecture that divides the path-planning process into two layers is proposed by designing the velocityobstacle strategy for satisfying timeliness and effectiveness.The upper-level layer focuses on creating an efficient Dubins initial path considering the dynamic constraints of the fixed wing.Subsequently,the lower-level layer detects potential collisions and adjusts its flight paths to avoid collisions by using the threedimensional velocity obstacle method,which describes the maneuvering space of collision avoidance as the intersection space of half space.To further handle the dynamic and collisionavoidance constraints,a priority mechanism is designed to ensure that the adjusted path is still feasible for fixed-wing UAVs.Simulation experiments demonstrate the effectiveness of the proposed method.
文摘Autonomous mobile robot navigation is one of the most emerging areas of research by using swarm intelligence. Path planning and obstacle avoidance are most researched current topics like navigational challenges for mobile robot. The paper presents application and implementation of Firefly Algorithm(FA)for Mobile Robot Navigation(MRN) in uncertain environment. The uncertainty is defined over the changing environmental condition from static to dynamic. The attraction of one firefly towards the other firefly due to variation of their brightness is the key concept of the proposed study. The proposed controller efficiently explores the environment and improves the global search in less number of iterations and hence it can be easily implemented for real time obstacle avoidance especially for dynamic environment. It solves the challenges of navigation, minimizes the computational calculations, and avoids random moving of fireflies. The performance of proposed controller is better in terms of path optimality when compared to other intelligent navigational approaches.
基金Project(20100481323) supported by China Postdoctoral Science FoundationProjects(61201133,61172055,61072067,51278058)supported by the National Natural Science Foundation of China+4 种基金Project(NCET-11-0691) supported by the Program for New Century Excellent Talents in UniversityProject(11105) supported by the Foundation of Guangxi Key Lab of Wireless Wideband Communication & Signal Processing,ChinaProject(B08038) supported by the "111" Project,ChinaProject(K5051301011) supported by the Fundamental Research Funds for the Central Universities of ChinaProject(CX12178(6)) supported by the Xian Municipal Technology Transfer Promotion funds,China
文摘A critical safe distance(CSD)model in V2V(vehicle-to-vehicle)communication systems was proposed to primarily enhance driving safety by disseminating warning notifications to vehicles when they approach calculated CSD.By elaborately analyzing the vehicular movement features especially when braking,our CSD definition was introduced and its configuration method was given through dividing radio range into different communication zones.Based on our definition,the needed message propagation delay was also derived which could be used to control the beacon frequency or duration.Next,the detailed CSD expressions were proposed in different mobility scenarios by fully considering the relative movement status between the front and rear vehicles.Numerical results show that our proposed model could provide reasonable CSD under different movement scenarios which eliminates the unnecessary reserved inter-vehicle distance and guarantee the safety at the same time.The compared time-headway model always shows a smaller CSD due to focusing on traffic efficiency whereas the traditional braking model generally outputs a larger CSD because it assumes that the following car drives with a constant speed and did not discuss the scenario when the leading car suddenly stops.Different from these two models,our proposed model could well balances the requirements between driving safety and traffic throughput efficiency by generating a CSD in between the values of the two models in most cases.
文摘The rapid increase of space debris population has posed serious threaten to the safety of human space activities and became a global issue.How to enhance the technical capabilities of space debris threat coping ability is of great significance to the sustainable development of space activities,the further development,and utilization of outer space.In this paper,we describe space debris research progress of China on observation,collision avoidance,protection,mitigation,regulation,and standard during the last twenty years,and look forward to the future development direction of space debris.
基金This project was supported by the National Natural Science Foundation of China (60573129).
文摘Communication security is a critical aspect of QoS provisioning in wireless mesh network (WMN). Because of the inherent characteristics of WMN, conventional security mechanisms cannot be applied. In order to guarantee the communication security, a novel communication security mechanism is proposed. The mechanism uses a communication encryption scheme to encrypt data packets and employs a risk avoidance scheme to avoid the malicious nodes during communications. Simulation results indicate that the mechanism is able to provide secure communication effectively and reduce the damage of attacks through multiple paths.
基金Projects(2009ZX03003-003, 2009ZX03003-004) supported by the Major National Science & Technology ProgramProject(B08038) supported by the "111" Project+1 种基金Project(HX0109012417) supported by Huawei Technologies Co., Ltd, ChinaProject(IRT0852) supported by Program for Changjiang Scholars and Innovative Research Team in Chinese University
文摘In order to avoid severe performance degradation led by the inter-cell interference (ICI) in orthogonal frequency division multiple access (OFDMA) systems with a frequency reused factor (FRF) of 1,distributed schedule algorithm (DS-OCS) and distributed proportional fairness schedule algorithm (DPFS-OCS) based on orthogonal complement space (OCS) were proposed. The first right and left singular vectors of the channel that the user experienced were selected as the transmitting and receiving beamforming vectors. An interference space was spanned by the left singular vectors of the entire interference users in the same channel. The most suitable user lay in the OCS of the interference space was scheduled to avoid suffering interference from neighboring cells based on the criterion of system capacity maximizing and proportional fairness. The simulation results show that the average system capacity can be improved by 2%-4% compared with the DS-OCS algorithm with the Max C/I algorithm,by 6%-10% compared with the DPFS-OCS algorithm with the PF algorithm.
文摘In several applications, such as collision avoidance, it is necessary to have a system able to rapidly detect the simultaneous presence of different obstacles. In general, these applications do not require high resolution performance, but it is necessary to assure high system reliability also within critical scenarios, as in the case of partially transparent atmosphere or environment in presence of multiple objects(implying multiple echoes having different delay times.) This paper describes the algorithm, the architecture and the implementation of a digital Light Detection and Ranging(LIDAR) system based on a chirped optical carrier. This technique provides some advantages compared to the pulsed approach, primarily the reduction of the peak power of the laser. In the proposed architecture all the algorithms for signal processing are implemented using digital hardware. In this way, some specific advantages are obtained: improved detection performance(larger dynamics, range and resolution), capability of detecting multiple obstacles having different echoes amplitude, reduction of the noise effects, reduction of the costs, size and weight of the resulting equipment. The improvement provided by this fully digital solution is potentially useful in different applications such as: collision avoidance systems, 3D mapping of environments and, in general, remote sensing systems which need wide distance and dynamics.