The precipitation efficiency and its relationship to physical factors are examined by analyzing a two-dimensional cloud-resolving model simulation during TOGA COARE in this study. The basic physical factors include co...The precipitation efficiency and its relationship to physical factors are examined by analyzing a two-dimensional cloud-resolving model simulation during TOGA COARE in this study. The basic physical factors include convective avail- able potential energy, water-vapor convergence, vertical wind shear, cloud ratio, sea surface temperature, air temperature, and precipitable water. Precipitation efficiencies do not show a close relationship to air temperature nor to sea surface tem- perature nor to precipitable water. The precipitation efficiency increases as the water-vapor convergence rate increases and vertical wind shear weakens, whereas it decreases as the convective available potential energy dissipates and anvil clouds develop.展开更多
It remains unclear whether the elevational diversity gradients observed in seed plants across different taxonomic levels (family, genus, and species) are driven by the same macro-environmental variables. In this stu...It remains unclear whether the elevational diversity gradients observed in seed plants across different taxonomic levels (family, genus, and species) are driven by the same macro-environmental variables. In this study, seed plant elevational distribution data from the Lancang River Nature Reserve (Yunnan, China) were used to investigate spatial patterns in diversity and their environ- mental correlates, comparing across taxonomic levels. Environmental variables included energy availability, climate seasonality and environmental heterogeneity. All taxonomic levels (family, genus, and species) were found to have strong elevational richness gradients, with the strength of the gradient weakening at higher taxonomic levels. Spatial patterns in richness were explained by a combination of contemporary environmental variables and the mid-domain effect at all taxonomic levels. The independent effects of temperature- and precipitation-related variables were similar in explaining geographical patterns of family, genus and species richness. Energy, seasonality and heterogeneity variables influenced seed plant spatial richness at different taxonomic levels in similar ways.展开更多
基金supported by the National Basic Research Program of China(Grant No.2014CB441402)the National Natural Science Foundation of China(Grant Nos.41275065,41075044,and 41075043)the 985 Program of Zhejiang University
文摘The precipitation efficiency and its relationship to physical factors are examined by analyzing a two-dimensional cloud-resolving model simulation during TOGA COARE in this study. The basic physical factors include convective avail- able potential energy, water-vapor convergence, vertical wind shear, cloud ratio, sea surface temperature, air temperature, and precipitable water. Precipitation efficiencies do not show a close relationship to air temperature nor to sea surface tem- perature nor to precipitable water. The precipitation efficiency increases as the water-vapor convergence rate increases and vertical wind shear weakens, whereas it decreases as the convective available potential energy dissipates and anvil clouds develop.
基金supported by the Key Project of National Key Research and Development Plans(Grant No.2016YFC0503106)
文摘It remains unclear whether the elevational diversity gradients observed in seed plants across different taxonomic levels (family, genus, and species) are driven by the same macro-environmental variables. In this study, seed plant elevational distribution data from the Lancang River Nature Reserve (Yunnan, China) were used to investigate spatial patterns in diversity and their environ- mental correlates, comparing across taxonomic levels. Environmental variables included energy availability, climate seasonality and environmental heterogeneity. All taxonomic levels (family, genus, and species) were found to have strong elevational richness gradients, with the strength of the gradient weakening at higher taxonomic levels. Spatial patterns in richness were explained by a combination of contemporary environmental variables and the mid-domain effect at all taxonomic levels. The independent effects of temperature- and precipitation-related variables were similar in explaining geographical patterns of family, genus and species richness. Energy, seasonality and heterogeneity variables influenced seed plant spatial richness at different taxonomic levels in similar ways.