期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
融合句嵌入的VAACGAN多对多语音转换 被引量:1
1
作者 李燕萍 曹盼 +1 位作者 石杨 张燕 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2021年第3期500-508,共9页
针对非平行文本条件下语音转换质量不理想、说话人个性相似度不高的问题,提出一种融合句嵌入的变分自编码辅助分类器生成对抗网络(VAACGAN)语音转换方法,在非平行文本条件下,有效实现了高质量的多对多语音转换。辅助分类器生成对抗网络... 针对非平行文本条件下语音转换质量不理想、说话人个性相似度不高的问题,提出一种融合句嵌入的变分自编码辅助分类器生成对抗网络(VAACGAN)语音转换方法,在非平行文本条件下,有效实现了高质量的多对多语音转换。辅助分类器生成对抗网络的鉴别器中包含辅助解码器网络,能够在预测频谱特征真假的同时输出训练数据所属的说话人类别,使得生成对抗网络的训练更为稳定且加快其收敛速度。通过训练文本编码器获得句嵌入,将其作为一种语义内容约束融合到模型中,利用句嵌入包含的语义信息增强隐变量表征语音内容的能力,解决隐变量存在的过度正则化效应的问题,有效改善语音合成质量。实验结果表明:所提方法的转换语音平均MCD值较基准模型降低6.67%,平均MOS值提升8.33%,平均ABX值提升11.56%,证明该方法在语音音质和说话人个性相似度方面均有显著提升,实现了高质量的语音转换。 展开更多
关键词 语音转换 句嵌入 文本编码器 辅助分类器生成对抗网络(acgan) 变分自编码器 非平行文本 多对多
在线阅读 下载PDF
基于改进ACGAN算法的车道排队车辆估计及其分类
2
作者 郭海锋 杨宪赞 金峻臣 《高技术通讯》 EI CAS 北大核心 2020年第11期1169-1177,共9页
针对传统模型驱动的排队车辆研究中构建概率分布困难、建模繁琐等问题,结合双向长短时记忆(Bi-LSTM)网络和辅助分类器生成对抗网络(ACGAN)的特点,提出一种数据驱动的车道级排队车辆估计算法。该算法无需对交叉口空间关系建模,其生成器采... 针对传统模型驱动的排队车辆研究中构建概率分布困难、建模繁琐等问题,结合双向长短时记忆(Bi-LSTM)网络和辅助分类器生成对抗网络(ACGAN)的特点,提出一种数据驱动的车道级排队车辆估计算法。该算法无需对交叉口空间关系建模,其生成器采用Bi-LSTM结构,以速度序列为输入,根据速度与排队车辆的时间相关性,生成最小、最大排队车辆。判别器来自ACGAN,在区分真假样本的同时实现排队车辆到拥堵等级标签的分类。同时,为避免网络训练不稳定、梯度消失的问题,舍弃原ACGAN的真假二分类任务,引入Wasserstein散度来衡量真实序列与生成序列的分布距离,并对相应的目标函数进行优化。结果表明,与其他算法相比,该算法在分类准确率方面提高了3.96%~9.62%,同时总体估计误差最小,验证了利用速度估计车道排队车辆的可行性。 展开更多
关键词 辅助分类器生成对抗网络(acgan) 双向长短时记忆(Bi-LSTM) Wasserstein散度 车道级排队车辆估计 分类
在线阅读 下载PDF
基于改进ACGAN的雷达空中目标细分类方法
3
作者 刘帅康 曹伟 +2 位作者 管志强 杨学岭 许金鑫 《火力与指挥控制》 CSCD 北大核心 2023年第7期74-78,84,共6页
为了解决窄带雷达空中3类飞机目标难以细分类的问题,提出了一种基于改进辅助生成对抗网络(auxiliary classifier generate adversarial networks,ACGAN)方法,将卷积神经网络(convolutional neural networks,CNN)结合堆叠的双向长短期记... 为了解决窄带雷达空中3类飞机目标难以细分类的问题,提出了一种基于改进辅助生成对抗网络(auxiliary classifier generate adversarial networks,ACGAN)方法,将卷积神经网络(convolutional neural networks,CNN)结合堆叠的双向长短期记忆网络(bidirectional long short-termmemory,Bi-LSTM)嵌入到ACGAN中,使ACGAN具有处理目标频域内部时序特征的能力。通过对X波段对空警戒雷达实测数据对比实验表明,提出的方法能够有效地对空中目标进行细分类,并具有较高的识别正确率。 展开更多
关键词 窄带雷达 空中目标分类 辅助生成对抗网络 双向长短期记忆网络
在线阅读 下载PDF
基于生成对抗网络的无载体信息隐藏 被引量:31
4
作者 刘明明 张敏情 +2 位作者 刘佳 高培贤 张英男 《应用科学学报》 CAS CSCD 北大核心 2018年第2期371-382,共12页
传统信息隐藏算法通过修改载体来嵌入秘密信息,难以从根本上抵抗基于统计的信息隐藏分析方法的检测,为此提出一种基于生成对抗网络的无载体信息隐藏方法.该方法将生成对抗网络中的类别标签替换为秘密信息作为驱动,直接生成含密图像进行... 传统信息隐藏算法通过修改载体来嵌入秘密信息,难以从根本上抵抗基于统计的信息隐藏分析方法的检测,为此提出一种基于生成对抗网络的无载体信息隐藏方法.该方法将生成对抗网络中的类别标签替换为秘密信息作为驱动,直接生成含密图像进行传递,再通过判别器将含密图像中的秘密信息提取出来,并借助生成对抗网络实现无载体信息隐藏.实验结果和分析表明,该隐藏方法在隐写容量、抗隐写分析、安全性方面均有良好表现. 展开更多
关键词 信息隐藏 无载体信息隐藏 生成对抗网络 acgan(auxiliary classifier GAN)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部