期刊文献+
共找到42篇文章
< 1 2 3 >
每页显示 20 50 100
基于BP神经网络模型的客流预测研究——以西安地铁小寨站为例
1
作者 张思瑶 杜晨阳 +2 位作者 张懿槾 高婉琦 贺鹏飞 《河南科技》 2025年第3期59-64,共6页
【目的】为了提高客流量预测的准确性,研究基于BP神经网络模型的客流量预测方法,为城市公共交通的调度和规划提供更为可靠的数据支持。【方法】采用BP神经网络模型,利用历史客流量数据作为训练样本,构建能够对未来客流量进行预测的模型... 【目的】为了提高客流量预测的准确性,研究基于BP神经网络模型的客流量预测方法,为城市公共交通的调度和规划提供更为可靠的数据支持。【方法】采用BP神经网络模型,利用历史客流量数据作为训练样本,构建能够对未来客流量进行预测的模型。通过模型训练与验证,分析不同参数配置下的模型性能,并与传统预测方法进行了对比。【结果】结果表明,基于BP神经网络的预测模型在多个时间段的客流量预测中表现优异,预测误差显著低于传统方法。BP神经网络模型预测结果在仅使用均值进行预测的情况下,其准确度越接近于1精准度越高,即预测结果训练集为0.701,测试集为-0.906均接近于1。【结论】BP神经网络模型能够有效捕捉客流量的变化趋势,具有较高的预测精度,适用于复杂城市交通系统的客流量预测任务。未来的研究可进一步优化模型参数,并结合其他算法提高预测性能。 展开更多
关键词 BP神经网络模型 聚类分析法 移动平均法 客流预测
在线阅读 下载PDF
基于CNN-LSTM-ARIMA的超短期风速预测 被引量:1
2
作者 王世明 张少童 娄嘉奕 《新能源进展》 CSCD 北大核心 2024年第6期688-695,共8页
提升风速预测的精准度对于实时调整电力系统的管理策略及增强风电市场的竞争实力有着关键作用。提出一种基于卷积神经网络(CNN)、长短期记忆网络(LSTM)和自回归集成移动平均(ARIMA)模型的超短期风速预测方法,通过CNN卷积层捕捉时间序列... 提升风速预测的精准度对于实时调整电力系统的管理策略及增强风电市场的竞争实力有着关键作用。提出一种基于卷积神经网络(CNN)、长短期记忆网络(LSTM)和自回归集成移动平均(ARIMA)模型的超短期风速预测方法,通过CNN卷积层捕捉时间序列数据中的模式和局部特征,利用LSTM模型对提取的特征进行学习训练,基于CNN-LSTM组合架构模型,预测未来风速并对比实际数据获得残差值,最终利用ARIMA分析历史残差来修正未来的预测误差值,实现对风速的超短期预测。以土耳其某个风电场的实际风速记录为基础,对未来10min的风速进行预测。结果表明,与CNN-LSTM、双层LSTM传统神经网络模型相比,CNN-LSTM-ARIMA模型对风速预测结果的平均绝对误差分别下降了16.40%、26.92%,能显著提高预测精度。 展开更多
关键词 风速预测 卷积神经网络 长短期记忆网络 自回归集成移动平均模型
在线阅读 下载PDF
基于在线监测时间序列数据的水质预测模型研究进展
3
作者 秦艳 徐庆 +3 位作者 陈晓倩 刘振鸿 唐亦舜 高品 《东华大学学报(自然科学版)》 CAS 北大核心 2024年第3期116-122,共7页
当前地表水突发性污染事件频发,已造成严重的环境和社会影响,对环境监管部门应急处置能力建设提出了新要求和新挑战。地表水水质在线监测数据具有高频率和高时效等特点,系统论述了基于在线监测时间序列数据的水质预测模型的研究现状和进... 当前地表水突发性污染事件频发,已造成严重的环境和社会影响,对环境监管部门应急处置能力建设提出了新要求和新挑战。地表水水质在线监测数据具有高频率和高时效等特点,系统论述了基于在线监测时间序列数据的水质预测模型的研究现状和进展,包括数据软测量、预处理方法和水质预测模型等,分析了不同水质预测模型在应用过程中存在的问题,并对未来研究方向进行了展望,以期为水质预测预警和环境监管提供技术支持和方法参考。 展开更多
关键词 水质预测模型 在线监测 时间序列分析 自回归模型 人工神经网络
在线阅读 下载PDF
基于ARIMA-TCN混合模型的高速铁路时间同步方法
4
作者 陈永 詹芝贤 张薇 《铁道学报》 EI CAS CSCD 北大核心 2024年第6期90-100,共11页
列控系统作为高速铁路的核心系统,保持其系统的时间同步对于行车安全至关重要。针对现有时间同步方法易受时变上下行传输时延、随机时钟跳变等影响,导致主从时钟偏移估计不准确的问题,提出一种基于差分自回归移动平均-时域卷积神经网络(... 列控系统作为高速铁路的核心系统,保持其系统的时间同步对于行车安全至关重要。针对现有时间同步方法易受时变上下行传输时延、随机时钟跳变等影响,导致主从时钟偏移估计不准确的问题,提出一种基于差分自回归移动平均-时域卷积神经网络(ARIMA-TCN)混合模型的高速铁路时间同步方法。首先,根据上下行链路传输速率的不对称比,建立高速铁路时钟的数学理论和实际观测模型。然后,使用拉依达准则识别处理跳变异常值,完成实际时间序列的预处理。再次,使用ARIMA模型平滑时间序列中不确定时延带来的噪声抖动,获得平稳的时间序列。最后,通过提出的注意力增强TCN模型进行预测补偿,完成时钟偏移的补偿校正。通过实验仿真,得到基站区间内位置、基站间距以及车速对高速铁路时间同步的影响性分析。实验结果表明:与对比方法相比,所提方法补偿后的均方根误差较最小二乘法减少了75%、较最大似然估计方法误差减少了44.4%,较BP神经网络方法误差减少了16.7%,验证所提方法具有更低的同步误差和更高的同步精度。 展开更多
关键词 时间同步 精确时钟协议 差分自回归移动平均模型 注意力增强时域卷积网络 时间补偿
在线阅读 下载PDF
基于误差补偿的多模态协同交通流预测模型 被引量:1
5
作者 吴宇轩 虞慧群 范贵生 《电子学报》 EI CAS CSCD 北大核心 2024年第8期2878-2890,共13页
交通流量因受周期性特征、突发状况等多重因素影响,现有模型的预测精度无法满足实际要求.对此,本文提出了基于误差补偿的多模态协同交通流预测模型(Multimodal Collaborative traffic flow prediction model based on Error Compensatio... 交通流量因受周期性特征、突发状况等多重因素影响,现有模型的预测精度无法满足实际要求.对此,本文提出了基于误差补偿的多模态协同交通流预测模型(Multimodal Collaborative traffic flow prediction model based on Error Compensation,MCEC).针对传统预测模型不能兼顾时间序列和协变量的问题,提出基于小波分析的特征拓展方法,该方法引入聚类算法得到节假日标签特征,将拥堵指数、交通事故图、天气信息作为拓展特征,对特征进行多尺度分解.在训练阶段,为达到充分学习各部分数据、最优匹配模型的效果,采用差分整合移动平均自回归模型(Autoreg Ressive Integrated Moving Average Model,ARIMA)、长短期记忆神经网络(Long Short-Term Memory network,LSTM)、限制动态时间规整技术(Dynamic Time Warping,DTW)以及自注意力机制(Self-Attention),设计了多模态协同模型训练.在误差补偿阶段,将得到的相应过程值输入基于支持向量机回归(Support Vector Regression,SVR)的误差补偿模块,对各分量的误差进行学习、补偿,并重构得到预测结果.使用公开的高速公路数据集对MCEC进行验证,在多个时间间隔下对比实验结果表明,MCEC在交通流量预测中的平均绝对百分比误差(Mean Absolute Percentage Error,MAPE)达到17.02%,比LSTM-SVR、ConvLSTM(Convolutional Long Short-Term Memory network)、ST-GCN(Spatial Temporal Graph Convolutional Networks)、MFFB(Multi-stream Feature Fusion Block)、Transformer等预测模型具有更高的预测精度,MCEC模型具有较好的有效性与合理性. 展开更多
关键词 交通流预测 误差补偿 多模态协同 长短期记忆神经网络 差分整合移动平均自回归模型
在线阅读 下载PDF
结合系统辨识和迁移学习的高速旋转弹气动力建模方法
6
作者 季稳 李春娜 +2 位作者 贾续毅 王刚 龚春林 《兵工学报》 EI CAS CSCD 北大核心 2024年第7期2197-2208,共12页
计算流体动力学与刚体动力学(Computational Fluid Dynamics and Rigid Body Dynamics,CFD/RBD)耦合仿真是旋转弹飞行性能评估的常用方法之一,但由于需要进行大量CFD计算,该方法效率较低。建立一个高效、精确且泛化能力强的气动力模型... 计算流体动力学与刚体动力学(Computational Fluid Dynamics and Rigid Body Dynamics,CFD/RBD)耦合仿真是旋转弹飞行性能评估的常用方法之一,但由于需要进行大量CFD计算,该方法效率较低。建立一个高效、精确且泛化能力强的气动力模型并以之替代耦合仿真中的CFD模块,可以大幅度提升仿真效率。针对前述旋转弹气动力建模问题,提出一种结合系统辨识和迁移学习的建模方法。给定旋转弹运动初始条件并采用CFD/RBD耦合仿真获得样本,采用自回归滑动平均方法建立原始气动力模型,同时采用长短时记忆网络建立状态预测模型。当初始条件变化不大时,原始气动力模型仍然适用;当初始条件发生较大改变时,利用迁移学习将状态预测模型迁移到该初始条件下,并预测相应初始条件下的状态参数,基于预测得到的状态参数,采用自回归滑动平均方法建立气动力模型。算例结果表明:所提方法适用于初始转速和俯仰角变化较大时对旋转弹气动力的精确建模;与直接以CFD/RBD耦合仿真结果为样本、采用自回归滑动平均方法建模相比,在精度相同时建模时间缩短了一半。 展开更多
关键词 高速旋转弹 气动力建模 自回归滑动平均 长短时记忆网络 迁移学习
在线阅读 下载PDF
基于改进型贝叶斯组合模型的短时交通流量预测 被引量:32
7
作者 王建 邓卫 赵金宝 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第1期162-167,共6页
针对短时交通流量预测的难题,在传统贝叶斯组合模型进行改善的基础上,提出一种改进型贝叶斯组合模型.该模型只根据各基本预测模型当前时刻之前几个交通流量的预测表现,通过提出的分配算法实时更新组合模型中各个基本预测模型的权重,从... 针对短时交通流量预测的难题,在传统贝叶斯组合模型进行改善的基础上,提出一种改进型贝叶斯组合模型.该模型只根据各基本预测模型当前时刻之前几个交通流量的预测表现,通过提出的分配算法实时更新组合模型中各个基本预测模型的权重,从而改善了传统贝叶斯组合模型权重计算迭代步长过长的缺陷,提高了贝叶斯组合模型对各个基本预测模型预测精度的灵敏性.通过对实地的交通流量的预测发现,基于改进型贝叶斯组合模型的预测精度不仅优于单一的预测方法,而且也优于传统的贝叶斯组合模型,从而证明了改进型贝叶斯组合模型有效提高预测的可靠性和具有一定的实用性. 展开更多
关键词 贝叶斯组合模型 交通流 小波分析 ARIMA算法 BP神经网络
在线阅读 下载PDF
常用空调负荷预测方法分析比较 被引量:35
8
作者 何大四 张旭 刘加平 《西安建筑科技大学学报(自然科学版)》 CSCD 北大核心 2006年第1期125-129,共5页
准确预测空调负荷不仅对蓄能空调高效运行意义重大,而且也是新兴的冷热电三联产技术发挥技术优势的关键所在.针对同一幢建筑,分别采用了多元线性回归、季节性指数平滑法以及神经网络方法等三种典型性预测方法进行负荷预测研究,并对三种... 准确预测空调负荷不仅对蓄能空调高效运行意义重大,而且也是新兴的冷热电三联产技术发挥技术优势的关键所在.针对同一幢建筑,分别采用了多元线性回归、季节性指数平滑法以及神经网络方法等三种典型性预测方法进行负荷预测研究,并对三种方法做了进一步改进.然后从预测精度、建模的复杂程度、工程上的可行性以及模型的其他特性(新建筑预测问题)等四个方面对负荷预测方法进行分析.结果表明:神经网络方法具有较高预测精度,而改进的季节性指数平滑法则具有较好的工程应用价值. 展开更多
关键词 负荷预测 线性回归 指数平滑 神经网络
在线阅读 下载PDF
基于粒子群改进BP神经网络的组合预测模型及其应用 被引量:45
9
作者 崔吉峰 乞建勋 杨尚东 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第1期190-194,共5页
针对应用广泛的传统人工智能预测BP(Back propagation)神经网络自身局限以及其在处理中长期复杂预测问题中需要样本数量大、泛化能力弱等不足,提出利用粒子群算法优化BP神经网络的学习算法,在此基础上,利用灰色预测方法和自回归移动平... 针对应用广泛的传统人工智能预测BP(Back propagation)神经网络自身局限以及其在处理中长期复杂预测问题中需要样本数量大、泛化能力弱等不足,提出利用粒子群算法优化BP神经网络的学习算法,在此基础上,利用灰色预测方法和自回归移动平均模型(ARIMA)时序预测对历史数据进行初步预测,对中长期预测中数据趋势项和随机项进行模拟;将初步预测的结果作为改进BP神经网络的输入,在此基础上进行训练和预测,构建基于改进BP网络的组合预测模型。以我国1978-2007年能源需求数据为样本,进行实例分析。结果表明:组合预测模型预测精度较BP神经网络、灰色预测方法和ARIMA预测方法分别提高4.8%,6.1%和5.3%,验证了组合预测方法在中长期预测问题处理中的有效性。 展开更多
关键词 BP神经网络 粒子群算法 ARIMA模型 灰色理论 组合预测
在线阅读 下载PDF
基于小波支持向量机特征分类的日径流组合预测——以宜昌三峡水库为例 被引量:11
10
作者 黄景光 吴巍 +2 位作者 程璐瑶 于楠 陈波 《中国农村水利水电》 北大核心 2018年第6期33-39,共7页
河流径流预测作为水库调度和发电的重要前提,其预测精度直接影响水利工程的综合效益。基于径流历史数据,针对其波动和随机性提出一种小波分析-支持向量机(SVM)特征分类组合预测模型。该模型首先利用小波分解提取原始径流序列的高低频能... 河流径流预测作为水库调度和发电的重要前提,其预测精度直接影响水利工程的综合效益。基于径流历史数据,针对其波动和随机性提出一种小波分析-支持向量机(SVM)特征分类组合预测模型。该模型首先利用小波分解提取原始径流序列的高低频能量谱作为SVM样本标记,并对原始序列进行特征分类,分为"平稳型"和"突变型"序列,对应不同类型序列的小波近似信号和细节信号分别采用自回归和滑动平均模型(ARMA)和BP神经网络模型进行预测,再重构各序列预测结果。最后采用平均绝对百分比误差(MAPE)、均方根误差(RMSE)、希尔不等式系数(TIC)作为模型评价指标。结果表明:在3个评价指标下,所提模型都优于ARMA和BP神经网络模型,并具有更好预测稳定性。 展开更多
关键词 径流预测 小波分解 支持向量机 自回归和滑动平均模型 神经网络 特征分类
在线阅读 下载PDF
二滩水电站中长期径流预报研究 被引量:13
11
作者 周惠成 张杨 +2 位作者 唐国磊 王雅军 蹇德平 《水电能源科学》 北大核心 2009年第1期5-9,共5页
针对二滩水电站的实际径流特性和水电站发电调度的要求,应用季节性自回归模型和人工神经网络模型对二滩水电站的月径流、汛期分段和年径流预报进行研究。结果表明,这两种模型对二滩水电站的月径流预报、汛期定性预报均达到了一定精度,... 针对二滩水电站的实际径流特性和水电站发电调度的要求,应用季节性自回归模型和人工神经网络模型对二滩水电站的月径流、汛期分段和年径流预报进行研究。结果表明,这两种模型对二滩水电站的月径流预报、汛期定性预报均达到了一定精度,可为二滩水电站优化调度的径流输入提供参考依据,尤其是AR(P)模型的非汛期月径流预测和BP模型年径流预测结果可在实际运行中使用。 展开更多
关键词 二滩水电站 季节性自回归模型 人工神经网络 中长期径流预报
在线阅读 下载PDF
基于ARIMA和GA-Elman神经网络的新疆年降水耦合预测研究 被引量:3
12
作者 黄华 蔡仁 +1 位作者 努尔古丽.艾力 穆振侠 《新疆农业科学》 CAS CSCD 北大核心 2015年第6期1093-1098,共6页
【目的】提高降水预报的预测精度,准确预测一个地区未来的降水量,可以提高该地区防灾减灾的能力,更好地为工农业生产生活提供决策参考。【方法】以年降水时间序列为研究对象,利用差分自回归移动平均(ARIMA)和GA-Elman神经网络技术建立... 【目的】提高降水预报的预测精度,准确预测一个地区未来的降水量,可以提高该地区防灾减灾的能力,更好地为工农业生产生活提供决策参考。【方法】以年降水时间序列为研究对象,利用差分自回归移动平均(ARIMA)和GA-Elman神经网络技术建立一种耦合预测模型。该模型首先根据年降水时间序列建立ARIMA模型,拟合它的线性结构部分,基于原始降水序列和ARIMA模型的预测值、残差序列,利用GA-Elman神经网络技术进行耦合建模。将该模型应用于新疆年降水量的预测预报,并与单一的ARIMA模型、GA-Elman神经网络模型进行比较。【结果】耦合模型的归一化均方误差、平均绝对误差、后验差比值及小误差概率分别为0.287,9.581,0.241和1,均优于ARIMA模型、GA-Elman神经网络模型,预测精度得到了明显的提高,预测精度等级为好。【结论】基于ARIMA和GA-Elman神经网络的耦合预测模型具有更高的预测精度,可用于新疆的年降水量预报。 展开更多
关键词 年降水 差分自回归移动平均 神经网络 遗传算法 耦合预测
在线阅读 下载PDF
电力系统短期负荷综合预测模型研究 被引量:4
13
作者 陈丰华 姜铁兵 +2 位作者 刘运红 梁年生 杨立常 《水电能源科学》 2002年第1期71-74,共4页
在分析包括气象因素在内的多种因素影响的基础上 ,建立了考虑日特征负荷、日基本负荷、随机负荷及特殊事件负荷的电力系统短期负荷综合预测模型 ,并用华中电网一年实测负荷数据作仿真计算。结果表明 ,该方法与传统的预测方法相比精度更... 在分析包括气象因素在内的多种因素影响的基础上 ,建立了考虑日特征负荷、日基本负荷、随机负荷及特殊事件负荷的电力系统短期负荷综合预测模型 ,并用华中电网一年实测负荷数据作仿真计算。结果表明 ,该方法与传统的预测方法相比精度更高 。 展开更多
关键词 负荷预测 傅立叶级数 人工神经网络 自回归模型 电力系统
在线阅读 下载PDF
基于ARIMA-RNN组合模型的云服务器老化预测方法 被引量:14
14
作者 孟海宁 童新宇 +3 位作者 石月开 朱磊 冯锴 黑新宏 《通信学报》 EI CSCD 北大核心 2021年第1期163-171,共9页
针对云服务器系统运行环境具有非线性、随机性和突发性的特点,提出了基于整合移动平均自回归和循环神经网络组合模型(ARIMA-RNN)的软件老化预测方法。首先,采用ARIMA模型对云服务器时间序列数据进行老化预测;然后,利用灰色关联度分析法... 针对云服务器系统运行环境具有非线性、随机性和突发性的特点,提出了基于整合移动平均自回归和循环神经网络组合模型(ARIMA-RNN)的软件老化预测方法。首先,采用ARIMA模型对云服务器时间序列数据进行老化预测;然后,利用灰色关联度分析法计算时间序列数据的相关性,确定RNN模型的输入维度;最后,将ARIMA模型预测值和历史数据作为RNN模型的输入进行二次老化预测,从而克服了ARIMA模型对波动较大的时间序列数据预测精度较低的局限性。实验结果表明,ARIMA-RNN组合模型比ARIMA模型及RNN模型的预测精度高,且比RNN模型预测收敛速度快。 展开更多
关键词 软件老化 云服务器 预测方法 ARIMA模型 RNN模型
在线阅读 下载PDF
利用卡尔曼滤波综合算法构建开采沉陷预测模型 被引量:7
15
作者 陈竹安 熊鑫 危小建 《金属矿山》 CAS 北大核心 2019年第5期132-136,共5页
为提高矿区地表沉陷预测精度,提出了基于自回归综合移动平均模型(Autoregressive Integrated Moving Average,ARIMA)的卡尔曼滤波模型与Elman神经网络相结合的综合预测模型。首先,针对沉陷监测序列的非平稳性与复杂性特点,ARIMA模型能... 为提高矿区地表沉陷预测精度,提出了基于自回归综合移动平均模型(Autoregressive Integrated Moving Average,ARIMA)的卡尔曼滤波模型与Elman神经网络相结合的综合预测模型。首先,针对沉陷监测序列的非平稳性与复杂性特点,ARIMA模型能够将原始数列平稳化,构建地表下沉预测模型,并作为卡尔曼滤波的状态方程;然后将Elman神经网络的沉陷预测结果作为观测值引入卡尔曼滤波观测方程中,建立综合预测模型;最后针对噪声方差Q与R选取的问题,统计出ARIMA模型与Elman神经网络模型的误差特性,从而计算出噪声Q与R的取值。分别将综合预测模型与BP神经网络模型、Elman神经网络模型以及卡尔曼滤波模型进行了预测精度对比,4种模型预测值与实测值的均方根误差分别为2.06、5.857 8、2.926 9、3.688 9 mm,相对误差分别为1.170 4%、3.0502%、1.432 6%、1.908 4%,绝对误差平均值分别为1.886 7、10.703 9、2.329 4、2.807 6 mm。研究表明:综合预测模型能够有效减小单一预测机制造成的同一性质误差累积,其预测精度明显优于其余3种模型,对于大幅提升矿区地表沉陷的预测精度有一定的参考价值。 展开更多
关键词 开采沉陷 卡尔曼滤波 自回归综合移动平均模型 ELMAN神经网络 综合预测模型 BP神经网络
在线阅读 下载PDF
雅鲁藏布江中下游径流预测方法的对比分析 被引量:2
16
作者 关静 梁川 +1 位作者 王欣 杨瑞祥 《黑龙江大学工程学报》 2017年第2期7-13,共7页
径流预测是水资源研究领域中的一项重要内容,对于区域社会经济规划具有重大的意义。引用雅鲁藏布江中下游羊村站和奴下站1980—2010年的径流资料,采用自回归模型、门限回归模型和人工神经网络模型进行年径流预测,采用自回归模型、季节... 径流预测是水资源研究领域中的一项重要内容,对于区域社会经济规划具有重大的意义。引用雅鲁藏布江中下游羊村站和奴下站1980—2010年的径流资料,采用自回归模型、门限回归模型和人工神经网络模型进行年径流预测,采用自回归模型、季节性自回归模型和季节性人工神经网络模型进行月径流预测。结果表明:年径流预测中,几种预测模型的预测精度均不高,相比较而言,一阶自回归模型和人工神经网络模型的预测结果更优;月径流预测中,季节性自回归模型和季节性人工神经网络模型在枯水期的预测精度均较高,但在丰水期径流预测效果欠佳。 展开更多
关键词 径流预测 自回归模型 人工神经网络模型 雅鲁藏布江
在线阅读 下载PDF
基于改进的网格法和BA-BP-ARMA模型的风功率预测 被引量:8
17
作者 梁涛 董玉兰 《水电能源科学》 北大核心 2018年第7期211-214,共4页
为更精准地预测风功率,首先结合改进的网格法和K均值聚类(Kmeans++)算法预处理风机数据,以剔除异常数据,引入临界概率并根据聚类的实际物理意义设置聚类中心点个数,临界概率同时反映风机性能。其次,利用改进的蝙蝠算法(改进BA)结合前馈(... 为更精准地预测风功率,首先结合改进的网格法和K均值聚类(Kmeans++)算法预处理风机数据,以剔除异常数据,引入临界概率并根据聚类的实际物理意义设置聚类中心点个数,临界概率同时反映风机性能。其次,利用改进的蝙蝠算法(改进BA)结合前馈(BP)神经网络建立风功率预测模型,BA中引入速度权重因子和高斯变异来避免陷入局部极值。最后,针对风功率模型的预测误差建立自回归滑动平均(ARMA)模型,采用误差的ARMA模型来修正风功率的预测值。结果表明,BA-BP-ARMA组合模型的预测效果更好。研究成果可为风功率预测提供参考。 展开更多
关键词 风功率预测 网格法 BP神经网络 蝙蝠算法 自回归滑动平均
在线阅读 下载PDF
基于自回归移动平均模型的图像模糊消除机制 被引量:2
18
作者 郭亚钢 《电视技术》 北大核心 2015年第1期7-11,23,共6页
为了克服图像模糊消除算法不稳定与解模糊等难题,保证复原图像的细节信息清晰完整,并提高算法的运行效率,获取实时性,提出了神经网络融合自回归移动平均模型的图像模糊消除并行稳定机制。引入神经网络,基于突触权重系数,构造激活函数;... 为了克服图像模糊消除算法不稳定与解模糊等难题,保证复原图像的细节信息清晰完整,并提高算法的运行效率,获取实时性,提出了神经网络融合自回归移动平均模型的图像模糊消除并行稳定机制。引入神经网络,基于突触权重系数,构造激活函数;再嵌入人工蜂群算法(Artificial Bees Colony,ABC),并以神经网络的均方误差函数设计适应度方程,由ABC算法训练神经网络,利用优化后的神经网络来获取自回归移动平均模型的参数;再将自回归移动平均优化模型引入模糊图像,以同时识别模糊函数与模糊图像;并对模糊函数进行相关定义,以消除算法不稳定性与解模糊问题;再对模糊图像进行反卷积,消除模糊。借助仿真实验来测试该机制的相关性能,结果表明:与其他模糊消除算法相比,该机制的运行速度更快,时耗最短;且该机制更稳定,模糊消除效果更好,复原图像的细节信息清晰可见。 展开更多
关键词 自回归移动平均优化模型 神经网络 激活函数 人工蜂群算法 模糊消除
在线阅读 下载PDF
基于EEMD-LSTM-ARIMA的土石坝渗压预测模型研究 被引量:5
19
作者 岑威钧 王肖鑫 蒋明欢 《水资源与水工程学报》 CSCD 北大核心 2023年第2期180-185,共6页
渗压监测是土石坝渗流安全评价的重要内容之一。由于渗压受到诸多外界因素的影响,测点的渗压值时间序列往往存在非平稳性、局部突变等特点,为此基于“分解-重构-组合”的思想构建了土石坝渗压预测的EEMD-LSTM-ARIMA模型。首先采用集合... 渗压监测是土石坝渗流安全评价的重要内容之一。由于渗压受到诸多外界因素的影响,测点的渗压值时间序列往往存在非平稳性、局部突变等特点,为此基于“分解-重构-组合”的思想构建了土石坝渗压预测的EEMD-LSTM-ARIMA模型。首先采用集合经验模态分解(EEMD)对时间序列特征进行提取,根据长短期记忆神经网络(LSTM)对提取出的特征分量进行预测,同时结合差分自回归移动平均方法(ARIMA)进行残差修正,组合LSTM和ARIMA的预测结果,重构得到改进预测模型。以某深厚覆盖层上的土石坝工程为例,选取主河床坝体防渗墙后2个典型测点的实测渗压值序列为研究对象进行应用验证。结果表明:相较于单一的LSTM模型和ARIMA模型,改进模型的平均绝对误差MAE、均方误差MSE、均方根误差RMSE均为3种模型中的最小值,预测精度明显优于另外2种模型,该模型为土石坝渗压的精确预测分析提供了新途径。 展开更多
关键词 土石坝 渗压预测 集合经验模态分解 长短期记忆神经网络 差分自回归移动平均
在线阅读 下载PDF
小波分解和组合模型相融合的网络流量网络预测 被引量:1
20
作者 包萍 《激光杂志》 CAS CSCD 北大核心 2014年第12期124-127,共4页
为了提高网络流量预测的准确性,提出一种小波分解和组合模型相融合的网络流量预测预测模型。首先采用小波分析对网络流量进行分解,得到网络流量的趋势序列和波动序列,然后分别采用自回归差分滑动平均模型和极限学习机对它们进行建模和预... 为了提高网络流量预测的准确性,提出一种小波分解和组合模型相融合的网络流量预测预测模型。首先采用小波分析对网络流量进行分解,得到网络流量的趋势序列和波动序列,然后分别采用自回归差分滑动平均模型和极限学习机对它们进行建模和预测,最后采用仿真实验测试组合模型的性能。仿真结果表明,相对于其它网络流量预测模型,组合预测模型提高了网络流量预测精度,降低了预测误差更小。 展开更多
关键词 网络流量 小波分解 极限学习机 自回归差分滑动平均模型
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部