There are various heterogeneous networks for terminals to deliver a better quality of service. Signal system recognition and classification contribute a lot to the process. However, in low signal to noise ratio(SNR)...There are various heterogeneous networks for terminals to deliver a better quality of service. Signal system recognition and classification contribute a lot to the process. However, in low signal to noise ratio(SNR) circumstances or under time-varying multipath channels, the majority of the existing algorithms for signal recognition are already facing limitations. In this series, we present a robust signal recognition method based upon the original and latest updated version of the extreme learning machine(ELM) to help users to switch between networks. The ELM utilizes signal characteristics to distinguish systems. The superiority of this algorithm lies in the random choices of hidden nodes and in the fact that it determines the output weights analytically, which result in lower complexity. Theoretically, the algorithm tends to offer a good generalization performance at an extremely fast speed of learning. Moreover, we implement the GSM/WCDMA/LTE models in the Matlab environment by using the Simulink tools. The simulations reveal that the signals can be recognized successfully to achieve a 95% accuracy in a low SNR(0 dB) environment in the time-varying multipath Rayleigh fading channel.展开更多
目的训练多种机器学习模型用于听性脑干反应(auditory brainstem response,ABR)波形的自动识别,并确定准确率最高的模型,使ABR自动识别技术更好地应用于临床实践。方法选取2021年6月至2022年6月北京清华长庚医院收治的100例听力正常和...目的训练多种机器学习模型用于听性脑干反应(auditory brainstem response,ABR)波形的自动识别,并确定准确率最高的模型,使ABR自动识别技术更好地应用于临床实践。方法选取2021年6月至2022年6月北京清华长庚医院收治的100例听力正常和伴有听力损伤人群的受试者(200耳)为研究对象,根据年龄和听力水平将受试者分为组1(年龄18~59岁,500、1000、2000、4000 Hz频率平均听阈≤25 dB HL)、组2(年龄≥60岁,500、1000、2000、4000 Hz频率平均听阈≤25 dB HL)、组3(年龄18~59岁,500、1000、2000、4000 Hz频率平均听阈>25 dB HL)、组4(年龄≥60岁,500、1000、2000、4000 Hz频率平均听阈>25 dB HL),每组25例。收集受试者纯音测听和ABR数据,提取ABR信号时域和频域特征,与受试者年龄、性别、纯音听阈,刺激声强度以及原始信号序列拼接得到特征向量。分别使用逻辑回归、支持向量机分类、伯努利朴素贝叶斯分类、高斯朴素贝叶斯分类、高斯过程分类、决策树、随机森林、表格网络、轻量化梯度提升框架、极致梯度提升框架和局部级联集成。等机器学习模型对ABR波形进行识别训练,并对整体数据和分组数据分别计算不同模型下波形识别的准确率。结果高斯过程分类模型的整体准确率达到了94.89%,超过了其他机器学习模型。其中95.62%为<60岁听力正常受试者、92.19%为≥60岁听力正常受试者、92.92%为<60岁伴有听力损失受试者、92.50%为≥60岁且伴有听力损失受试者。结论机器学习技术在ABR波形的自动识别方面具有良好的应用前景,高斯过程分类模型优于其他机器学习模型。展开更多
Current successes in artificial intelligence domain have revitalized interest in spacecraft pursuit-evasion game,which is an interception problem with a non-cooperative maneuvering target.The paper presents an automat...Current successes in artificial intelligence domain have revitalized interest in spacecraft pursuit-evasion game,which is an interception problem with a non-cooperative maneuvering target.The paper presents an automated machine learning(AutoML)based method to generate optimal trajectories in long-distance scenarios.Compared with conventional deep neural network(DNN)methods,the proposed method dramatically reduces the reliance on manual intervention and machine learning expertise.Firstly,based on differential game theory and costate normalization technique,the trajectory optimization problem is formulated under the assumption of continuous thrust.Secondly,the AutoML technique based on sequential model-based optimization(SMBO)framework is introduced to automate DNN design in deep learning process.If recommended DNN architecture exists,the tree-structured Parzen estimator(TPE)is used,otherwise the efficient neural architecture search(NAS)with network morphism is used.Thus,a novel trajectory optimization method with high computational efficiency is achieved.Finally,numerical results demonstrate the feasibility and efficiency of the proposed method.展开更多
基金supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China(2014 ZX03001027)
文摘There are various heterogeneous networks for terminals to deliver a better quality of service. Signal system recognition and classification contribute a lot to the process. However, in low signal to noise ratio(SNR) circumstances or under time-varying multipath channels, the majority of the existing algorithms for signal recognition are already facing limitations. In this series, we present a robust signal recognition method based upon the original and latest updated version of the extreme learning machine(ELM) to help users to switch between networks. The ELM utilizes signal characteristics to distinguish systems. The superiority of this algorithm lies in the random choices of hidden nodes and in the fact that it determines the output weights analytically, which result in lower complexity. Theoretically, the algorithm tends to offer a good generalization performance at an extremely fast speed of learning. Moreover, we implement the GSM/WCDMA/LTE models in the Matlab environment by using the Simulink tools. The simulations reveal that the signals can be recognized successfully to achieve a 95% accuracy in a low SNR(0 dB) environment in the time-varying multipath Rayleigh fading channel.
文摘目的训练多种机器学习模型用于听性脑干反应(auditory brainstem response,ABR)波形的自动识别,并确定准确率最高的模型,使ABR自动识别技术更好地应用于临床实践。方法选取2021年6月至2022年6月北京清华长庚医院收治的100例听力正常和伴有听力损伤人群的受试者(200耳)为研究对象,根据年龄和听力水平将受试者分为组1(年龄18~59岁,500、1000、2000、4000 Hz频率平均听阈≤25 dB HL)、组2(年龄≥60岁,500、1000、2000、4000 Hz频率平均听阈≤25 dB HL)、组3(年龄18~59岁,500、1000、2000、4000 Hz频率平均听阈>25 dB HL)、组4(年龄≥60岁,500、1000、2000、4000 Hz频率平均听阈>25 dB HL),每组25例。收集受试者纯音测听和ABR数据,提取ABR信号时域和频域特征,与受试者年龄、性别、纯音听阈,刺激声强度以及原始信号序列拼接得到特征向量。分别使用逻辑回归、支持向量机分类、伯努利朴素贝叶斯分类、高斯朴素贝叶斯分类、高斯过程分类、决策树、随机森林、表格网络、轻量化梯度提升框架、极致梯度提升框架和局部级联集成。等机器学习模型对ABR波形进行识别训练,并对整体数据和分组数据分别计算不同模型下波形识别的准确率。结果高斯过程分类模型的整体准确率达到了94.89%,超过了其他机器学习模型。其中95.62%为<60岁听力正常受试者、92.19%为≥60岁听力正常受试者、92.92%为<60岁伴有听力损失受试者、92.50%为≥60岁且伴有听力损失受试者。结论机器学习技术在ABR波形的自动识别方面具有良好的应用前景,高斯过程分类模型优于其他机器学习模型。
基金supported by the National Defense Science and Technology Innovation program(18-163-15-LZ-001-004-13).
文摘Current successes in artificial intelligence domain have revitalized interest in spacecraft pursuit-evasion game,which is an interception problem with a non-cooperative maneuvering target.The paper presents an automated machine learning(AutoML)based method to generate optimal trajectories in long-distance scenarios.Compared with conventional deep neural network(DNN)methods,the proposed method dramatically reduces the reliance on manual intervention and machine learning expertise.Firstly,based on differential game theory and costate normalization technique,the trajectory optimization problem is formulated under the assumption of continuous thrust.Secondly,the AutoML technique based on sequential model-based optimization(SMBO)framework is introduced to automate DNN design in deep learning process.If recommended DNN architecture exists,the tree-structured Parzen estimator(TPE)is used,otherwise the efficient neural architecture search(NAS)with network morphism is used.Thus,a novel trajectory optimization method with high computational efficiency is achieved.Finally,numerical results demonstrate the feasibility and efficiency of the proposed method.