The increasing penetration of renewable energy into power grids is reducing the regulation capacity of automatic generation control(AGC).Thus,there is an urgent demand to coordinate AGC units with active equipment suc...The increasing penetration of renewable energy into power grids is reducing the regulation capacity of automatic generation control(AGC).Thus,there is an urgent demand to coordinate AGC units with active equipment such as energy storage.Current dispatch decision-making methods often ignore the intermittent effects of renewable energy.This paper proposes a two-stage robust optimization model in which energy storage is used to compensate for the intermittency of renewable energy for the dispatch of AGC units.This model exploits the rapid adjustment capability of energy storage to compensate for the slow response speed of AGC units,improve the adjustment potential,and respond to the problems of intermittent power generation from renewable energy.A column and constraint generation algorithm is used to solve the model.In an example analysis,the proposed model was more robust than a model that did not consider energy storage at eliminating the effects of intermittency while offering clear improvements in economy and efficiency.展开更多
We report a new design of microwave source for X-band electron paramagnetic resonance spectrometer.The microwave source is equipped with a digital automatic frequency control circuit.The parameters of the digital auto...We report a new design of microwave source for X-band electron paramagnetic resonance spectrometer.The microwave source is equipped with a digital automatic frequency control circuit.The parameters of the digital automatic frequency control circuit can be flexibly configured for different experimental conditions,such as the input powers or the quality factors of the resonator.The configurability makes the microwave source universally compatible and greatly extends its application.To demonstrate the ability of adapting to various experimental conditions,the microwave source is tested by varying the input powers and the quality factors of the resonator.A satisfactory phase noise as low as-135 d Bc/Hz at 100-k Hz offset from the center frequency is achieved,due to the use of a phase-locked dielectric resonator oscillator and a direct digital synthesizer.Continuous-wave electron paramagnetic resonance experiments are conducted to examine the performance of the microwave source.The outstanding performance shows a prospect of wide applications of the microwave source in numerous fields of science.展开更多
提出了一种新的数字自动增益控制(Automatic Gain Control,AGC)控制算法,这种算法弥补了AGC芯片控制范围和控制精度不满足工程要求的缺陷,解决了其他算法没有处理的问题。阐述了输入信号能量提取算法、输入信号的能量滤波算法以及控制...提出了一种新的数字自动增益控制(Automatic Gain Control,AGC)控制算法,这种算法弥补了AGC芯片控制范围和控制精度不满足工程要求的缺陷,解决了其他算法没有处理的问题。阐述了输入信号能量提取算法、输入信号的能量滤波算法以及控制范围和控制精度调整算法,给出了基于新算法的AGC控制过程框图,分析了输入信号能量提取算法的性能和原理,对能量滤波算法进行了仿真,并对控制范围和控制精度算法进行了设备测试和验证。展开更多
基金supported by Theoretical study of power system synergistic dispatch National Science Foundation of China(51477091).
文摘The increasing penetration of renewable energy into power grids is reducing the regulation capacity of automatic generation control(AGC).Thus,there is an urgent demand to coordinate AGC units with active equipment such as energy storage.Current dispatch decision-making methods often ignore the intermittent effects of renewable energy.This paper proposes a two-stage robust optimization model in which energy storage is used to compensate for the intermittency of renewable energy for the dispatch of AGC units.This model exploits the rapid adjustment capability of energy storage to compensate for the slow response speed of AGC units,improve the adjustment potential,and respond to the problems of intermittent power generation from renewable energy.A column and constraint generation algorithm is used to solve the model.In an example analysis,the proposed model was more robust than a model that did not consider energy storage at eliminating the effects of intermittency while offering clear improvements in economy and efficiency.
基金Project supported by the Chinese Academy of Sciences(Grant Nos.XDC07000000 and GJJSTD20200001)Hefei Comprehensive National Science CenterYouth Innovation Promotion Association of Chinese Academy of Sciences for the support。
文摘We report a new design of microwave source for X-band electron paramagnetic resonance spectrometer.The microwave source is equipped with a digital automatic frequency control circuit.The parameters of the digital automatic frequency control circuit can be flexibly configured for different experimental conditions,such as the input powers or the quality factors of the resonator.The configurability makes the microwave source universally compatible and greatly extends its application.To demonstrate the ability of adapting to various experimental conditions,the microwave source is tested by varying the input powers and the quality factors of the resonator.A satisfactory phase noise as low as-135 d Bc/Hz at 100-k Hz offset from the center frequency is achieved,due to the use of a phase-locked dielectric resonator oscillator and a direct digital synthesizer.Continuous-wave electron paramagnetic resonance experiments are conducted to examine the performance of the microwave source.The outstanding performance shows a prospect of wide applications of the microwave source in numerous fields of science.
文摘提出了一种新的数字自动增益控制(Automatic Gain Control,AGC)控制算法,这种算法弥补了AGC芯片控制范围和控制精度不满足工程要求的缺陷,解决了其他算法没有处理的问题。阐述了输入信号能量提取算法、输入信号的能量滤波算法以及控制范围和控制精度调整算法,给出了基于新算法的AGC控制过程框图,分析了输入信号能量提取算法的性能和原理,对能量滤波算法进行了仿真,并对控制范围和控制精度算法进行了设备测试和验证。