期刊文献+
共找到72篇文章
< 1 2 4 >
每页显示 20 50 100
Optimal zero-crossing group selection method of the absolute gravimeter based on improved auto-regressive moving average model
1
作者 牟宗磊 韩笑 胡若 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第11期347-354,共8页
An absolute gravimeter is a precision instrument for measuring gravitational acceleration, which plays an important role in earthquake monitoring, crustal deformation, national defense construction, etc. The frequency... An absolute gravimeter is a precision instrument for measuring gravitational acceleration, which plays an important role in earthquake monitoring, crustal deformation, national defense construction, etc. The frequency of laser interference fringes of an absolute gravimeter gradually increases with the fall time. Data are sparse in the early stage and dense in the late stage. The fitting accuracy of gravitational acceleration will be affected by least-squares fitting according to the fixed number of zero-crossing groups. In response to this problem, a method based on Fourier series fitting is proposed in this paper to calculate the zero-crossing point. The whole falling process is divided into five frequency bands using the Hilbert transformation. The multiplicative auto-regressive moving average model is then trained according to the number of optimal zero-crossing groups obtained by the honey badger algorithm. Through this model, the number of optimal zero-crossing groups determined in each segment is predicted by the least-squares fitting. The mean value of gravitational acceleration in each segment is then obtained. The method can improve the accuracy of gravitational measurement by more than 25% compared to the fixed zero-crossing groups method. It provides a new way to improve the measuring accuracy of an absolute gravimeter. 展开更多
关键词 absolute gravimeter laser interference fringe Fourier series fitting honey badger algorithm mul-tiplicative auto-regressive moving average(MARMA)model
在线阅读 下载PDF
变分模态分解与时间序列模型相结合的结构损伤识别方法研究
2
作者 姚小俊 孙守鹏 +1 位作者 王强 杨小梅 《振动与冲击》 北大核心 2025年第5期131-139,217,共10页
针对准确定位土木工程结构突变损伤的损伤时刻和损伤位置问题,提出了基于变分模态分解(variational mode decomposition,VMD)与差分整合移动平均自回归(autoregressive integration moving average,ARIMA)模型的突变损伤识别方法。首先... 针对准确定位土木工程结构突变损伤的损伤时刻和损伤位置问题,提出了基于变分模态分解(variational mode decomposition,VMD)与差分整合移动平均自回归(autoregressive integration moving average,ARIMA)模型的突变损伤识别方法。首先,利用自回归模型功率谱确定初始频率及需要分解的模态数量,接着通过VMD方法将振动非平稳信号初步分解为多个平稳的分量信号;然后,利用ARIMA模型来拟合各阶信号分量,获取模型残差,再利用ARIMA拟合模型信号分量得到的模型残差确定损伤的具体时刻;最后,利用主成分分析法获取结构的模态振型,构造一个基于频率与振型的损伤指标,结合损伤阈值定位出损伤位置。该方法通过地震激励下十自由度框架模拟算例以及实际简支钢桁梁桥数据进行分析。结果证实,该方法能够用于平稳及非平稳激励下的结构损伤时刻和损伤位置的定位。 展开更多
关键词 损伤识别 变分模态分解(VMD) 差分整合移动平均自回归(ARIMA)模型 自回归模型功率谱 模型残差
在线阅读 下载PDF
基于SARIMA和SVR组合模型的转向架系统寿命评估 被引量:1
3
作者 师蔚 范乔 +2 位作者 杨洋 胡定玉 廖爱华 《铁道机车车辆》 北大核心 2024年第1期157-163,共7页
随着地铁运营时间和里程的增加,地铁车辆逐渐接近其理论寿命,为确保车辆运行安全性,需对其重要子系统进行健康状态及剩余寿命评估。文中选取车辆转向架系统作为研究对象,提出了一种基于协方差优选法的季节性回归移动平均(SARIMA)和支持... 随着地铁运营时间和里程的增加,地铁车辆逐渐接近其理论寿命,为确保车辆运行安全性,需对其重要子系统进行健康状态及剩余寿命评估。文中选取车辆转向架系统作为研究对象,提出了一种基于协方差优选法的季节性回归移动平均(SARIMA)和支持向量回归(SVR)的组合模型对转向架寿命进行评估。首先,将车辆转向架系统历史故障率转化为健康指数,然后基于协方差优选法将SARIMA和SVR进行赋权组合,根据转向架系统历史健康指数进行预测,最后建立历史和预测的健康指数与运行时间的数学模型,分析得到转向架系统的剩余寿命。以某地铁车辆转向架系统为例进行算例分析及验证,结果表明组合模型可更准确地预测其健康状态,为有关维修部门开展维修维护策略提供理论依据,估计得出其剩余寿命,为车辆寿命后期退役及延寿决策提供理论数据分析支撑。 展开更多
关键词 转向架系统 寿命预测 季节性回归移动平均和支持向量回归(SARIMA和SVR) 组合模型 协方差优选法
在线阅读 下载PDF
基于CNN-LSTM-ARIMA的超短期风速预测 被引量:1
4
作者 王世明 张少童 娄嘉奕 《新能源进展》 CSCD 北大核心 2024年第6期688-695,共8页
提升风速预测的精准度对于实时调整电力系统的管理策略及增强风电市场的竞争实力有着关键作用。提出一种基于卷积神经网络(CNN)、长短期记忆网络(LSTM)和自回归集成移动平均(ARIMA)模型的超短期风速预测方法,通过CNN卷积层捕捉时间序列... 提升风速预测的精准度对于实时调整电力系统的管理策略及增强风电市场的竞争实力有着关键作用。提出一种基于卷积神经网络(CNN)、长短期记忆网络(LSTM)和自回归集成移动平均(ARIMA)模型的超短期风速预测方法,通过CNN卷积层捕捉时间序列数据中的模式和局部特征,利用LSTM模型对提取的特征进行学习训练,基于CNN-LSTM组合架构模型,预测未来风速并对比实际数据获得残差值,最终利用ARIMA分析历史残差来修正未来的预测误差值,实现对风速的超短期预测。以土耳其某个风电场的实际风速记录为基础,对未来10min的风速进行预测。结果表明,与CNN-LSTM、双层LSTM传统神经网络模型相比,CNN-LSTM-ARIMA模型对风速预测结果的平均绝对误差分别下降了16.40%、26.92%,能显著提高预测精度。 展开更多
关键词 风速预测 卷积神经网络 长短期记忆网络 自回归集成移动平均模型
在线阅读 下载PDF
基于ARIMA-TCN混合模型的高速铁路时间同步方法
5
作者 陈永 詹芝贤 张薇 《铁道学报》 EI CAS CSCD 北大核心 2024年第6期90-100,共11页
列控系统作为高速铁路的核心系统,保持其系统的时间同步对于行车安全至关重要。针对现有时间同步方法易受时变上下行传输时延、随机时钟跳变等影响,导致主从时钟偏移估计不准确的问题,提出一种基于差分自回归移动平均-时域卷积神经网络(... 列控系统作为高速铁路的核心系统,保持其系统的时间同步对于行车安全至关重要。针对现有时间同步方法易受时变上下行传输时延、随机时钟跳变等影响,导致主从时钟偏移估计不准确的问题,提出一种基于差分自回归移动平均-时域卷积神经网络(ARIMA-TCN)混合模型的高速铁路时间同步方法。首先,根据上下行链路传输速率的不对称比,建立高速铁路时钟的数学理论和实际观测模型。然后,使用拉依达准则识别处理跳变异常值,完成实际时间序列的预处理。再次,使用ARIMA模型平滑时间序列中不确定时延带来的噪声抖动,获得平稳的时间序列。最后,通过提出的注意力增强TCN模型进行预测补偿,完成时钟偏移的补偿校正。通过实验仿真,得到基站区间内位置、基站间距以及车速对高速铁路时间同步的影响性分析。实验结果表明:与对比方法相比,所提方法补偿后的均方根误差较最小二乘法减少了75%、较最大似然估计方法误差减少了44.4%,较BP神经网络方法误差减少了16.7%,验证所提方法具有更低的同步误差和更高的同步精度。 展开更多
关键词 时间同步 精确时钟协议 差分自回归移动平均模型 注意力增强时域卷积网络 时间补偿
在线阅读 下载PDF
基于误差补偿的多模态协同交通流预测模型 被引量:1
6
作者 吴宇轩 虞慧群 范贵生 《电子学报》 EI CAS CSCD 北大核心 2024年第8期2878-2890,共13页
交通流量因受周期性特征、突发状况等多重因素影响,现有模型的预测精度无法满足实际要求.对此,本文提出了基于误差补偿的多模态协同交通流预测模型(Multimodal Collaborative traffic flow prediction model based on Error Compensatio... 交通流量因受周期性特征、突发状况等多重因素影响,现有模型的预测精度无法满足实际要求.对此,本文提出了基于误差补偿的多模态协同交通流预测模型(Multimodal Collaborative traffic flow prediction model based on Error Compensation,MCEC).针对传统预测模型不能兼顾时间序列和协变量的问题,提出基于小波分析的特征拓展方法,该方法引入聚类算法得到节假日标签特征,将拥堵指数、交通事故图、天气信息作为拓展特征,对特征进行多尺度分解.在训练阶段,为达到充分学习各部分数据、最优匹配模型的效果,采用差分整合移动平均自回归模型(Autoreg Ressive Integrated Moving Average Model,ARIMA)、长短期记忆神经网络(Long Short-Term Memory network,LSTM)、限制动态时间规整技术(Dynamic Time Warping,DTW)以及自注意力机制(Self-Attention),设计了多模态协同模型训练.在误差补偿阶段,将得到的相应过程值输入基于支持向量机回归(Support Vector Regression,SVR)的误差补偿模块,对各分量的误差进行学习、补偿,并重构得到预测结果.使用公开的高速公路数据集对MCEC进行验证,在多个时间间隔下对比实验结果表明,MCEC在交通流量预测中的平均绝对百分比误差(Mean Absolute Percentage Error,MAPE)达到17.02%,比LSTM-SVR、ConvLSTM(Convolutional Long Short-Term Memory network)、ST-GCN(Spatial Temporal Graph Convolutional Networks)、MFFB(Multi-stream Feature Fusion Block)、Transformer等预测模型具有更高的预测精度,MCEC模型具有较好的有效性与合理性. 展开更多
关键词 交通流预测 误差补偿 多模态协同 长短期记忆神经网络 差分整合移动平均自回归模型
在线阅读 下载PDF
基于WPD-ARIMA-GARCH组合模型的酱卤肉制品安全风险区间预测 被引量:2
7
作者 尹佳 黄茜 +7 位作者 陈翔 陈晨 陈锂 张涛 徐成 黄亚平 郭鹏程 文红 《食品科学》 EI CAS CSCD 北大核心 2024年第3期176-184,共9页
针对传统确定性预测不能提供不确定性信息的难题,本研究提出了一种点估计和区间估计组合预测模型,并将其创新性地应用在食品安全风险预警领域。在点估计部分,使用小波包分解(wavelet packet decomposition,WPD)对周风险等级序列分解后,... 针对传统确定性预测不能提供不确定性信息的难题,本研究提出了一种点估计和区间估计组合预测模型,并将其创新性地应用在食品安全风险预警领域。在点估计部分,使用小波包分解(wavelet packet decomposition,WPD)对周风险等级序列分解后,应用差分自回归移动平均(autoregressive integrated moving average,ARIMA)模型进行预测;在区间估计部分,使用广义自回归条件异方差(generalized autoregressive conditional heteroskedast,GARCH)模型对残差进行预测。本实验将建立的WPD-ARIMA-GARCH组合模型运用于某地区酱卤肉制品的风险预测,结果表明2019年的3月底和7月底该地区的酱卤肉制品安全风险较高,与实际情况相符;同时,该模型在10个不同地区的酱卤肉制品风险预测中,均方误差、平均绝对误差和平均绝对百分比误差分别为1.626、0.806和20.824;其90%置信区间的预测区间平均宽度和覆盖宽度标准值均为0.024,可以覆盖所有真实值。该模型具有较高的预测精度和较低的误差,能对酱卤肉制品质量安全起到风险防控作用,可为日常食品安全监管提供相应的技术支持。 展开更多
关键词 酱卤肉制品 小波包分解 差分自回归移动平均模型 广义自回归条件异方差模型 区间估计
在线阅读 下载PDF
基于SARIMA预警模型的水位监测效果分析与研究 被引量:2
8
作者 张健 《水利科技与经济》 2024年第4期23-28,共6页
为了提高城市水位监测的准确性及洪涝等灾害的预警能力,提出基于季节性自回归积分滑动平均(Seasonal auto-regressive integral moving average, SARIMA)模型的水位监测预警模型。该模型综合了自回归模型、移动平均模型和季节性差分模型... 为了提高城市水位监测的准确性及洪涝等灾害的预警能力,提出基于季节性自回归积分滑动平均(Seasonal auto-regressive integral moving average, SARIMA)模型的水位监测预警模型。该模型综合了自回归模型、移动平均模型和季节性差分模型,适用于分析和预测具有季节性和非平稳特征的时间序列数据。结果显示,基于SARIMA预警模型的水位监测系统,对城市周边的水位监测拟合效果较好,可对城市周边水位进行有效监测,提高应对城市内涝灾害的预警效果。 展开更多
关键词 季节性自回归积分滑动平均模型 水位监测 水位预警 数据填充
在线阅读 下载PDF
挠性陀螺EMD-ARIMA漂移模型设计与应用
9
作者 蔡曜 司玉辉 +3 位作者 王玉琢 黄涛 张亚静 杨晓龙 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第11期3434-3444,共11页
为降低挠性陀螺的漂移率,提高挠性陀螺的精度,基于经验模态分解(EMD)、求和自回归移动平均(ARIMA)2种信号处理工具,提出EMD-ARIMA漂移模型。设计野点剔除算子,避免EMD过程中出现过冲、欠冲问题;对本征模态函数(IMF)辨识进行讨论,制定各... 为降低挠性陀螺的漂移率,提高挠性陀螺的精度,基于经验模态分解(EMD)、求和自回归移动平均(ARIMA)2种信号处理工具,提出EMD-ARIMA漂移模型。设计野点剔除算子,避免EMD过程中出现过冲、欠冲问题;对本征模态函数(IMF)辨识进行讨论,制定各阶IMF的使用原则;设计自适应定阶寻优算子,避免依靠技术人员判读自相关图、偏自相关图进行ARIMA建模,实现对多个信号(或多阶IMF)进行EMD-ARIMA建模的批处理功能。将重构的拟合信号和原始信号进行对比。工程实践表明:最终重构的拟合信号较原始信号漂移率降低了12.8%;Allan方差各项误差源均降低,MAPE为3.6×10^(-3),RMSE为5.1×10^(-3),残差趋于白噪声;漂移模型在挠性陀螺漂移建模中,具有同路重复性、两路一致性、不同个体通用性。 展开更多
关键词 挠性陀螺 求和自回归移动平均模型 经验模态分解 野点剔除算子 自适应定阶寻优算子
在线阅读 下载PDF
航空发动机性能参数预测方法 被引量:25
10
作者 李晓白 崔秀伶 郎荣玲 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2008年第3期253-256,共4页
航空发动机性能参数预测对于发动机的视情维修具有重要的意义.为了提高预测精度,在分析发动机性能参数数据特点的基础上,提出了一种新的应用于此领域的组合预测模型.首先利用小波变换将原始数据分解为不同尺度上的几组子序列,根据各子... 航空发动机性能参数预测对于发动机的视情维修具有重要的意义.为了提高预测精度,在分析发动机性能参数数据特点的基础上,提出了一种新的应用于此领域的组合预测模型.首先利用小波变换将原始数据分解为不同尺度上的几组子序列,根据各子序列的特点分别选用自回归滑动平均(ARMA,Autoregressive Moving Average)模型或求和自回归滑动平均(ARIMA,Autoregressive Integrated Moving Average)模型进行预测,然后将所有预测结果合成,得到最终预测结果.通过仿真实验,验证了该组合模型提高短期和中长期预测精度的有效性,并分析了小波分解层数对于预测精度的影响. 展开更多
关键词 组合预测 自回归滑动平均模型 求和自回归滑动平均模型 排气温度裕度
在线阅读 下载PDF
基于ARIMA模型预测梅毒月发病率的价值 被引量:9
11
作者 马晓梅 徐学琴 +5 位作者 闫国立 施学忠 刘颖 王瑾瑾 刘晓蕙 裴兰英 《西安交通大学学报(医学版)》 CAS CSCD 北大核心 2018年第1期131-134,152,共5页
目的探讨建立ARIMA模型在梅毒月发病率预测中的应用价值,为梅毒防控工作提供依据。方法运用Eviews8.0软件对2009年1月-2015年12月我国梅毒月发病率数据建立ARIMA模型,利用2016年1月-6月实际数据验证,评价模型精度指标采用均方根误差(roo... 目的探讨建立ARIMA模型在梅毒月发病率预测中的应用价值,为梅毒防控工作提供依据。方法运用Eviews8.0软件对2009年1月-2015年12月我国梅毒月发病率数据建立ARIMA模型,利用2016年1月-6月实际数据验证,评价模型精度指标采用均方根误差(root mean squared error,RMSE)、平均绝对误差(mean absolute error,MAE)、平均绝对百分误差(mean absolute percentage error,MAPE)、平均相对误差(mean relative error,MRE)。同法外推预测2016年7月-12月全国梅毒月发病率。结果 2009年1月-2016年6月全国梅毒月发病率最优模型是ARIMA(2,1,1)×(0,1,1)_(12),模型表达式为:(1-B)(1-B^(12))(1+0.820B)(1+0.566B^2)x_t^2=(1+0.365B)(1+0.897B^(12))ε_t,R^2=0.832,RMSE=0.181,MAE=0.118,MAPE=5.088。外推2016年7月-12月预测结果分别为3.124、3.008、2.906、2.691、2.714、2.717。结论 ARIMA模型具有较高的预测精度,可较好地拟合我国梅毒月发病率的演变趋势并进行短期预测。 展开更多
关键词 梅毒 ARIMA模型 月发病率 预测
在线阅读 下载PDF
基于改进型贝叶斯组合模型的短时交通流量预测 被引量:32
12
作者 王建 邓卫 赵金宝 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第1期162-167,共6页
针对短时交通流量预测的难题,在传统贝叶斯组合模型进行改善的基础上,提出一种改进型贝叶斯组合模型.该模型只根据各基本预测模型当前时刻之前几个交通流量的预测表现,通过提出的分配算法实时更新组合模型中各个基本预测模型的权重,从... 针对短时交通流量预测的难题,在传统贝叶斯组合模型进行改善的基础上,提出一种改进型贝叶斯组合模型.该模型只根据各基本预测模型当前时刻之前几个交通流量的预测表现,通过提出的分配算法实时更新组合模型中各个基本预测模型的权重,从而改善了传统贝叶斯组合模型权重计算迭代步长过长的缺陷,提高了贝叶斯组合模型对各个基本预测模型预测精度的灵敏性.通过对实地的交通流量的预测发现,基于改进型贝叶斯组合模型的预测精度不仅优于单一的预测方法,而且也优于传统的贝叶斯组合模型,从而证明了改进型贝叶斯组合模型有效提高预测的可靠性和具有一定的实用性. 展开更多
关键词 贝叶斯组合模型 交通流 小波分析 ARIMA算法 BP神经网络
在线阅读 下载PDF
基于LCC理论的电网损耗及其传导模型 被引量:6
13
作者 蒋利民 韩永霞 +3 位作者 黄伟 闫华光 戴栋 李立浧 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第12期55-62,共8页
全寿命周期成本(LCC)分析是全寿命周期管理理念的核心.文中针对电网及其主设备开展了LCC精细化模型研究,在LCC模型中增加了损耗传导成本项,并引入了基于通货膨胀率预测的经济学修正方法.基于电网的特点(即总损耗的增加会引起发电侧成本... 全寿命周期成本(LCC)分析是全寿命周期管理理念的核心.文中针对电网及其主设备开展了LCC精细化模型研究,在LCC模型中增加了损耗传导成本项,并引入了基于通货膨胀率预测的经济学修正方法.基于电网的特点(即总损耗的增加会引起发电侧成本的增加、下级电网损耗的增加会导致上级电网建设综合投资增加),提出了电网损耗传导模型,并研究了损耗传导成本在LCC中占比的计算方法.通货膨胀率预测采用差分自回归移动平均模型.以典型电网为例,基于上述LCC模型研究分析了电网各环节的损耗分布,提出了配电网节能的必要性和重要性.最后开展了损耗传导成本对电网LCC计算结果影响的实例分析,验证了损耗传导模型的实用性和工程应用价值. 展开更多
关键词 全寿命周期成本 损耗传导模型 电网损耗分布 差分自回归移动平均模型
在线阅读 下载PDF
基于RVM和ARIMA的短时交通流量预测方法研究 被引量:14
14
作者 韦凌翔 陈红 +2 位作者 王永岗 钟栋青 王春娥 《武汉理工大学学报(交通科学与工程版)》 2017年第2期349-354,共6页
为进一步提高短时交通流量预测精度,提出一种基于RVM和ARIMA的短时交通流量降噪方法.设计了降噪方法的流程,选取了降噪方法误差评价指标;基于RVM和ARIMA的短时交通流量预测方法和预测流程,引入平均绝对相对误差(MAPE)作为预测方法误差... 为进一步提高短时交通流量预测精度,提出一种基于RVM和ARIMA的短时交通流量降噪方法.设计了降噪方法的流程,选取了降噪方法误差评价指标;基于RVM和ARIMA的短时交通流量预测方法和预测流程,引入平均绝对相对误差(MAPE)作为预测方法误差评价指标,以某城市道路的录像数据为实例,对构建的预测方法有效性进行验证.结果表明,在不同公用时间尺度(5,10,15min)下,所提出的短时交通流量预测方法的平均绝对相对误差均小于直接运用指数降噪模型、BT神经网络模型、ARIMA模型等方法预测的结果,有效地提高了短时交通流量预测精度. 展开更多
关键词 交通工程 短时交通流量预测 相关向量机 多时间尺度 自回归积分移动平均模型
在线阅读 下载PDF
基于Markov参数精细积分法的载荷识别研究 被引量:7
15
作者 郭杏林 毛玉明 +2 位作者 赵岩 朱礼文 潘忠文 《振动与冲击》 EI CSCD 北大核心 2009年第3期27-30,共4页
对于结构受多点分布动态荷载识别问题提出了精细正则化算法。基于状态空间描述建立了离散动力系统滑动平均模型,并应用2N算法精细计算了系统模型的马尔科夫(Markov)参数矩阵,给出了全局时间域内多点分布动态载荷识别问题的精细识别模型... 对于结构受多点分布动态荷载识别问题提出了精细正则化算法。基于状态空间描述建立了离散动力系统滑动平均模型,并应用2N算法精细计算了系统模型的马尔科夫(Markov)参数矩阵,给出了全局时间域内多点分布动态载荷识别问题的精细识别模型。针对载荷辨识模型求解过程中遇到的方程病态问题,采用正则化截断奇异值分解技术进行处理。通过有限元数值模型仿真,验证了所提出方法的正确性和有效性。 展开更多
关键词 精细积分法 载荷识别 病态问题 滑动平均模型 正则化
在线阅读 下载PDF
基于多模型集成的铁矿粉库存量预测方法 被引量:4
16
作者 蔡雁 吴敏 +1 位作者 王绍丽 王春生 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第11期3399-3407,共9页
针对铁矿粉库存量预测问题,结合灰色系统模型与时间序列模型的优点,提出一种基于多模型集成的库存量集成预测方法。根据库存量历史数据,分别建立基于残差修正的等维新息GM(1,1)模型与自回归积分移动平均模型ARIMA(p,d,q);采用基于信息... 针对铁矿粉库存量预测问题,结合灰色系统模型与时间序列模型的优点,提出一种基于多模型集成的库存量集成预测方法。根据库存量历史数据,分别建立基于残差修正的等维新息GM(1,1)模型与自回归积分移动平均模型ARIMA(p,d,q);采用基于信息熵的方法对2种模型进行加权集成;分别采用单一模型与集成模型对铁矿粉库存量进行预测。仿真验证结果表明:集成预测模型实现库存量的准确预测,在3种模型中预测结果最好。 展开更多
关键词 库存量预测 GM(1 1)模型 ARIMA模型 集成模型
在线阅读 下载PDF
基于ARIMA-GM组合模型的湖北省电力需求预测研究 被引量:8
17
作者 王莉琳 张维 +3 位作者 赖敏 向铁元 杨再鹤 周波 《中国农村水利水电》 北大核心 2013年第4期101-105,共5页
通过分析湖北省历年电力消费量,利用灰色模型(GM)和自回归积分移动平均(ARIMA)模型分别对2012-2020期间的湖北省电力需求量进行了预测,然后通过方差倒数法进行组合预测,得到了精度更高的预测结果。通过分析整个预测过程及结果,该方法易... 通过分析湖北省历年电力消费量,利用灰色模型(GM)和自回归积分移动平均(ARIMA)模型分别对2012-2020期间的湖北省电力需求量进行了预测,然后通过方差倒数法进行组合预测,得到了精度更高的预测结果。通过分析整个预测过程及结果,该方法易于操作,精度较高,是一种对电力需求预测方法有益的探索。 展开更多
关键词 时间序列 灰色模型 自回归积分移动平均模型 方差倒数法
在线阅读 下载PDF
辽宁省海洋渔业产量结构调整的初步研究 被引量:6
18
作者 尹增强 张国胜 +1 位作者 李九奇 冯维山 《南方水产》 2005年第6期55-62,共8页
根据辽宁省海洋渔业统计资料,分析了辽宁省海洋渔业产量结构,运用剩余产量模型估算了最大持续产量,运用ARIMA(pdq)时间序列模型与GM(11)模型分析预测了2004~2010年海水养殖产量、远洋渔业产量与各海区的捕捞产量。结果表明:辽宁省近海... 根据辽宁省海洋渔业统计资料,分析了辽宁省海洋渔业产量结构,运用剩余产量模型估算了最大持续产量,运用ARIMA(pdq)时间序列模型与GM(11)模型分析预测了2004~2010年海水养殖产量、远洋渔业产量与各海区的捕捞产量。结果表明:辽宁省近海捕捞产量已经超过最大持续产量,如不采取有效措施仍将有一定程度的增长,在渤海与黄海的产量到2010年将比2003年增加23.40万t与23.79万t;远洋渔业与海水养殖业,其产量在2010年将比2003年增加8.59万t与242.40万t。文章对辽宁省海洋渔业产量结构调整进行了讨论。 展开更多
关键词 海洋渔业产量 结构调整 剩余产量模型 GM模型 ARIMA模型
在线阅读 下载PDF
基于ARIMA-RNN组合模型的云服务器老化预测方法 被引量:14
19
作者 孟海宁 童新宇 +3 位作者 石月开 朱磊 冯锴 黑新宏 《通信学报》 EI CSCD 北大核心 2021年第1期163-171,共9页
针对云服务器系统运行环境具有非线性、随机性和突发性的特点,提出了基于整合移动平均自回归和循环神经网络组合模型(ARIMA-RNN)的软件老化预测方法。首先,采用ARIMA模型对云服务器时间序列数据进行老化预测;然后,利用灰色关联度分析法... 针对云服务器系统运行环境具有非线性、随机性和突发性的特点,提出了基于整合移动平均自回归和循环神经网络组合模型(ARIMA-RNN)的软件老化预测方法。首先,采用ARIMA模型对云服务器时间序列数据进行老化预测;然后,利用灰色关联度分析法计算时间序列数据的相关性,确定RNN模型的输入维度;最后,将ARIMA模型预测值和历史数据作为RNN模型的输入进行二次老化预测,从而克服了ARIMA模型对波动较大的时间序列数据预测精度较低的局限性。实验结果表明,ARIMA-RNN组合模型比ARIMA模型及RNN模型的预测精度高,且比RNN模型预测收敛速度快。 展开更多
关键词 软件老化 云服务器 预测方法 ARIMA模型 RNN模型
在线阅读 下载PDF
渭北旱塬区地下水动态研究 被引量:11
20
作者 张向飞 周维博 +2 位作者 云涛 刘小学 董起广 《水资源与水工程学报》 2012年第1期89-93,共5页
渭北旱塬区地表水资源短缺,地下水成为城市和农村的重要供水水源,为了掌握该区地下水动态变化特征,本文以渭北旱塬区2000-2009年间水文气象和地下水浅层监测井实测资料为依据,根据地下水补给排泄条件及自然、人为影响因素之间的关系,将... 渭北旱塬区地表水资源短缺,地下水成为城市和农村的重要供水水源,为了掌握该区地下水动态变化特征,本文以渭北旱塬区2000-2009年间水文气象和地下水浅层监测井实测资料为依据,根据地下水补给排泄条件及自然、人为影响因素之间的关系,将研究区地下水动态成因分为灌溉-开采、渗入-蒸发、渗入-开采和径流-开采4种类型,对各类型地下水变化特征进行分析,并运用差分自回归移动平均(ARIMA)模型对地下水位埋深进行模拟预测。结果表明:拟合程度较高,预测效果较好。 展开更多
关键词 地下水动态 次降雨 ARIMA模型 渭北旱塬区
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部