期刊文献+
共找到315篇文章
< 1 2 16 >
每页显示 20 50 100
基于NSSAE的批次发酵过程质量相关与质量无关故障检测与诊断
1
作者 刘忠 章政 +1 位作者 楼旭阳 朱金林 《食品工业科技》 北大核心 2025年第3期1-10,共10页
为了解决批次发酵过程中质量无关故障所可能引起的不必要停机,本文提出了噪声半监督堆叠自编码器(Noised semi-supervised stacked auto-encoder,NSSAE)算法以区分质量相关与质量无关故障。首先,基于互信息计算过程变量与质量变量间互信... 为了解决批次发酵过程中质量无关故障所可能引起的不必要停机,本文提出了噪声半监督堆叠自编码器(Noised semi-supervised stacked auto-encoder,NSSAE)算法以区分质量相关与质量无关故障。首先,基于互信息计算过程变量与质量变量间互信息,并对数据加入噪声以提高算法对质量相关信息挖掘能力。其次,构建NSSAE的过程监测模型,在模型的首层自编码器和最后一层自编码器中构建故障检测和质量相关检测指标,并利用核密度估计计算对应的控制极限。最后,利用深度重构贡献图(Deep reconstruction-based contribution,DRBC)定位故障根源。从数值仿真和乳酸菌批次发酵实验结果可知,本文提出的NSSAE算法能够准确区分质量相关与无关故障,首层的残差空间的检测指标的故障检测率接近100%,最后一层隐空间的检测指标能够准确识别质量相关故障和质量无关故障。基于DRBC诊断方法能在故障发生后准确识别发生故障的变量,该研究结果为批次发酵过程质量相关与质量无关故障监测问题提出了一种切实可行的过程监测方法。 展开更多
关键词 批次发酵过程 质量相关故障 噪声半监督堆叠自编码器 故障检测与诊断 深度重构贡献图
在线阅读 下载PDF
基于Auto Encoder的智能监控指纹识别系统
2
作者 常峰 贺元骅 《中国测试》 CAS 北大核心 2015年第8期71-74,93,共5页
针对目前已有的嵌入式指纹识别系统往往采用手工提取,不能自动学习并提取识别所需的特征及识别正确率仍然不高的缺点,提出一种基于自动编码器(Auto Encoder)和LSSVM的指纹识别系统。首先,提出采用FPS200作为指纹传感器采集指纹数据,然... 针对目前已有的嵌入式指纹识别系统往往采用手工提取,不能自动学习并提取识别所需的特征及识别正确率仍然不高的缺点,提出一种基于自动编码器(Auto Encoder)和LSSVM的指纹识别系统。首先,提出采用FPS200作为指纹传感器采集指纹数据,然后将采集的数据经过滤波和二值化等预处理,通过比较差异算法获得Auto Encoder中的权值和偏置等参数,从而得到训练好的Auto Encoder用于指纹图像特征提取。最后,将自动提取的特征进行训练和分类,将投票最多的分类作为指纹识别的结果。通过测试表明,系统能较精确地实现指纹识别,具有收敛速度快、正确识别率高和匹配时间短的优点。 展开更多
关键词 指纹 识别率 匹配 自动编码器
在线阅读 下载PDF
基于IDT-SAE-ELM的煤矿电缆短路故障识别方法
3
作者 王清亮 李泓朴 +1 位作者 李书超 王伟峰 《西安科技大学学报》 北大核心 2024年第6期1205-1217,共13页
针对现有方法无法有效提取煤矿电缆短路故障深层特征而导致故障识别准确率和类型判定精度低的问题,提出了一种基于IDT-SAE-ELM的短路故障识别方法。首先采用IDT技术对传统SAE模型进行改进,以提高其高效捕获故障样本深层特征的能力;然后... 针对现有方法无法有效提取煤矿电缆短路故障深层特征而导致故障识别准确率和类型判定精度低的问题,提出了一种基于IDT-SAE-ELM的短路故障识别方法。首先采用IDT技术对传统SAE模型进行改进,以提高其高效捕获故障样本深层特征的能力;然后利用Adam算法优化IDT-SAE模型参数,实现了从原始电流信号自动获取短路故障特征量;最后利用ELM模型替代Softmax构造故障分类器,以提高SAE模型对特征差异性小的故障类型辨识能力,实现对煤矿电缆短路故障的识别与类型的智能判定。以煤矿电网实际参数进行短路故障仿真,分别利用Loss曲线与T-分布随机近邻嵌入算法可视化分析所提方法的抗过拟合能力与短路故障深层特征挖掘能力,采用准确率和精度对所提方法进行评价,结果表明:所提方法相较于传统SAE具有更好的故障特征提取能力和抗过拟合能力;所提方法对电缆短路故障的识别准确率稳定在99%左右,相较于RF、BPNN、ELM等人工智能方法,准确率分别提高了7.47%、5.82%、5.42%;在严重噪声干扰下,所提方法短路故障识别准确率始终保持在98.75%以上,有效提高了煤矿电缆短路故障识别准确率和类型判定精度,能够为越级跳闸原因判别、短路事故的分析与处理提供重要依据。 展开更多
关键词 煤矿 短路故障 堆栈自编码器 极限学习机 Dropout集成技术
在线阅读 下载PDF
基于AE和云模型的核电主泵运行状态监测方法
4
作者 区瑞坚 陈兴江 +3 位作者 王琦 李盛杰 王琇峰 薛杨 《中国核电》 2024年第6期757-763,共7页
针对传统方法监测核电厂反应堆冷却剂泵运行状态时,存在监测变量多、阈值多和易受外部干扰误报的问题,提出了一种基于自编码和云模型的核主泵状态监测方法。首先,依据核主泵故障机理和专家知识,建立核主泵故障特征向量集。其次,借助具... 针对传统方法监测核电厂反应堆冷却剂泵运行状态时,存在监测变量多、阈值多和易受外部干扰误报的问题,提出了一种基于自编码和云模型的核主泵状态监测方法。首先,依据核主泵故障机理和专家知识,建立核主泵故障特征向量集。其次,借助具有强非线性特征学习能力的自编码模型将核主泵故障特征向量集融合,降低监测变量复杂度。再次,引入云模型理论中的正向、逆向云发生器绘制融合特征向量云图,从而有效避免异常点干扰。最后,利用云图间欧式距离构建监测指标,并结合自动阈值技术实现核主泵状态监测。工程验证结果表明,与使用传统多监测变量的核主泵状态监测方法相比,该监测方法监测效果更好,鲁棒性更强。 展开更多
关键词 核电厂 核主泵 自编码器 云模型 状态监测
在线阅读 下载PDF
基于SSAE-IARO-BiLSTM的工业过程故障诊断研究
5
作者 张瑞成 孙伟良 梁卫征 《振动与冲击》 EI CSCD 北大核心 2024年第15期244-250,260,共8页
针对工业过程故障诊断精度低的问题,提出了一种基于栈式稀疏自编码网络(stacked sparse auto-encoder network, SSAE)和改进人工兔算法优化双向长短时记忆神经网络(improved artificial rabbit algorithm optimized bidirectional long ... 针对工业过程故障诊断精度低的问题,提出了一种基于栈式稀疏自编码网络(stacked sparse auto-encoder network, SSAE)和改进人工兔算法优化双向长短时记忆神经网络(improved artificial rabbit algorithm optimized bidirectional long short-term memory neural network, IARO-BiLSTM)的故障诊断方法。首先,利用SSAE网络强大的特征提取能力,实现对原始数据进行降维处理;其次,引入Circle混沌映射以达到丰富种群数量的目的,提出权重系数和Levy飞行机制改进人工兔算法的位置更新公式,提高人工兔算法的寻优能力,进而对BiLSTM网络的参数进行优化。最后,利用优化后的BiLSTM网络实现对故障的识别和分类。通过选取多组数据集进行验证,结果表明,基于SSAE-IARO-BiLSTM故障诊断方法能够准确地对故障进行识别和分类,且诊断准确率可达98%以上。 展开更多
关键词 故障诊断 人工兔算法(IARO) 双向长短时记忆网络(BiLSTM) 栈式稀疏自编码器(SSae)
在线阅读 下载PDF
基于SCADA参量耦合网络变分图自编码的风电机组异常检测方法
6
作者 刘小峰 李俊锋 柏林 《太阳能学报》 北大核心 2025年第5期567-576,共10页
利用风电机组数据采集与监控系统(SCADA)数据监测参量本身数值信息及其相互间的耦合关联性,提出基于多参量耦合关系变分图自编码的风电机组异常检测方法。该方法利用时间序列自适应符号传递熵构建SCADA数据的参量耦合关系网络,设计变分... 利用风电机组数据采集与监控系统(SCADA)数据监测参量本身数值信息及其相互间的耦合关联性,提出基于多参量耦合关系变分图自编码的风电机组异常检测方法。该方法利用时间序列自适应符号传递熵构建SCADA数据的参量耦合关系网络,设计变分图自编码再编码模型对参量耦合关系网络进行编码重构。结合SCADA参量耦合关系网络的编码重构误差构建风电机组的健康状态评估指标,采用支持向量回归的迭代更新法,对机组实时健康阈值进行自适应设置。两个风场的风力发电机组SCADA数据分析结果表明:该文方法充分利用了SCADA数据本身的数值信息及耦合关系结构信息,有效提高了风电机组异常状态检测的准确性及对环境工况的鲁棒性。 展开更多
关键词 风电机组 多参量耦合 变分图自编码 健康指数 异常检测
在线阅读 下载PDF
不均衡少标签样本下基于语义自动编码网络的高光谱图像分类
7
作者 孙宝刚 何国斌 《红外技术》 北大核心 2025年第4期429-436,共8页
为了提升不均衡少标签样本下高光谱图像分类性能,本文提出了一种改进的语义自动编码网络,该网络首先将高光谱的类别标签信息引入到语义自编码网络模型中,通过将不同数据集的原始数据及标签信息分别映射至同一特征空间以建立已知类别和... 为了提升不均衡少标签样本下高光谱图像分类性能,本文提出了一种改进的语义自动编码网络,该网络首先将高光谱的类别标签信息引入到语义自编码网络模型中,通过将不同数据集的原始数据及标签信息分别映射至同一特征空间以建立已知类别和未知类别的关联,然后将该对应关系应用于未知数据集进行标签推理,并构建基于图正则化项的目标函数以保存数据集中特征流形结构,最后采用交替方向乘子法将全局问题分解为多个较小、较容易求解的局部子问题,最终获得全局最优解。实验选取3个具有不同的光谱维度、光谱带数量和土地覆盖类型的高光谱数据集进行处理,可以满足实验数据的多样性。结果表明,本文所提方法的分类结果具有较高的分类精度,其分类结果与基准结果比较相近,适合工程上对非均衡高光谱图像数据分类。 展开更多
关键词 高光谱图像 地物分类 深度学习 语义自动编码网络 语义关联 特征映射
在线阅读 下载PDF
基于改进自编码解码网络的轨道不平顺评价方法
8
作者 杨建伟 王小慧 +3 位作者 刘佩珊 杨飞 王金海 孙培文 《铁道学报》 北大核心 2025年第2期131-144,共14页
目前无砟轨道平顺性的评价方法只适用于中短波长,难以满足大范围动态复杂线路的变化需求。如果仅依靠单一波长轨检数据评价轨道状态,会导致其他波长局部波动或潜在病害不能被有效识别的现象。通过挖掘不同波长下的轨道不平顺信息,将深... 目前无砟轨道平顺性的评价方法只适用于中短波长,难以满足大范围动态复杂线路的变化需求。如果仅依靠单一波长轨检数据评价轨道状态,会导致其他波长局部波动或潜在病害不能被有效识别的现象。通过挖掘不同波长下的轨道不平顺信息,将深度学习方法与现有评价方法相融合,提出改进的自编码解码高斯生成对抗神经网络(DAGGAN)及自适应轨道质量指数方法(DAE_TQI),实现对轨道状态的实时监控。为验证方法的准确性和有效性,将其与其他方法进行对比,验证DAGGAN模型在识别单几何不平顺时的有效性,同时DAE_TQI方法可综合评价无砟轨道状态,结果可作为高速铁路轨道养护维修的理论依据。 展开更多
关键词 轨道不平顺 轨道质量指数 自编码解码网络 高斯对抗网络 自适应轨道质量指数
在线阅读 下载PDF
基于多尺度卷积自编码器的船舶逆变器故障诊断
9
作者 崔博文 张思远 《舰船科学技术》 北大核心 2025年第3期135-140,共6页
为实现对船舶逆变器的有效维护,确保船舶逆变器模块的正常运行,提出一种基于多尺度特征融合和降噪卷积自编码器的船舶逆变器开路故障诊断方法。可以直接对一维原始电流数据自适应地提取数据特征,降低信号内的噪声,实现端到端的故障诊断... 为实现对船舶逆变器的有效维护,确保船舶逆变器模块的正常运行,提出一种基于多尺度特征融合和降噪卷积自编码器的船舶逆变器开路故障诊断方法。可以直接对一维原始电流数据自适应地提取数据特征,降低信号内的噪声,实现端到端的故障诊断。首先,利用数据增强方法来增强数据集;其次,根据数据特点设计可以提取局部细节和整体结构信息的多尺度卷积特征融合模块,并在编码器中引入该模块,形成特征提取模型;最后,利用全连接神经网络对模型输出的数据特征进行分类,根据分类结果实现故障诊断。实验结果表明,所提出的方法具有优越的数据特征提取性能及噪声鲁棒性能,可以实现船舶逆变器开关器件开路故障诊断。 展开更多
关键词 船舶逆变器 故障诊断 多尺度特征融合 卷积自编码器
在线阅读 下载PDF
优化损失函数的低信噪比微地震信号去噪方法
10
作者 高宏宇 宋雪岩 +1 位作者 张译文 郝枫桦 《石油物探》 北大核心 2025年第3期522-532,共11页
检波器采集的实际微地震数据所包含的噪声类型复杂,数据的信噪比极低,传统的去噪方法无法清晰识别有效信号和噪声。为此,提出了一种优化损失函数约束的融合残差注意力的深度卷积自编码网络(RADNet)去噪方法。该方法使用深度卷积自编码... 检波器采集的实际微地震数据所包含的噪声类型复杂,数据的信噪比极低,传统的去噪方法无法清晰识别有效信号和噪声。为此,提出了一种优化损失函数约束的融合残差注意力的深度卷积自编码网络(RADNet)去噪方法。该方法使用深度卷积自编码结构对含噪数据进行局部特征提取并融合全局特征,利用注意力机制对不同特征进行权重分配,同时引入优化后的损失函数指导网络训练,最后基于残差网络构建去噪后的有效信号。为验证所提方法的有效性,分别将RADNet方法应用于仿真和实际微地震数据处理,并与现有的去噪方法进行对比分析。实验结果表明,RADNet去噪方法相较于基准的去噪卷积神经网络(DnCNN)和深度卷积自编码网络峰值信噪比(PSNR)分别提升了2.783 dB和8.099 dB,结构相似度(SSIM)分别提升了0.031和0.065。此外,与同类方法相比,提出的RADNet去噪方法均方误差(MSE)更低,并且能够更好地保留微地震数据中的有效信号及同相轴波形纹理细节。 展开更多
关键词 卷积神经网络 微地震 随机噪声 低信噪比 损失函数 深度卷积自编码
在线阅读 下载PDF
基于FCNN和ICAE的SAR图像目标识别方法 被引量:10
11
作者 喻玲娟 王亚东 +2 位作者 谢晓春 林赟 洪文 《雷达学报(中英文)》 CSCD 北大核心 2018年第5期622-631,共10页
近年来,基于卷积神经网络(Convolutional Neural Network, CNN)的合成孔径雷达(Synthetic Aperture Radar, SAR)图像目标识别得到深入研究。全卷积神经网络(Fully Convolutional Neural Network, FCNN)是CNN结构上的改进,它比CNN能获得... 近年来,基于卷积神经网络(Convolutional Neural Network, CNN)的合成孔径雷达(Synthetic Aperture Radar, SAR)图像目标识别得到深入研究。全卷积神经网络(Fully Convolutional Neural Network, FCNN)是CNN结构上的改进,它比CNN能获得更高的识别率,但在训练过程中仍需要大量的带标签训练样本。该文提出一种基于FCNN和改进的卷积自编码器(Improved Convolutional Auto-Encoder, ICAE)的SAR图像目标识别方法,即先用ICAE无监督训练方式获得的编码器网络参数初始化FCNN的部分参数,后用带标签训练样本对FCNN进行训练。基于MSTAR数据集的十类目标分类实验结果表明,在不扩充带标签训练样本的情况下,该方法不仅能获得98.14%的平均正确识别率,而且具有较强的抗噪声能力。 展开更多
关键词 合成孔径雷达 自动目标识别 全卷积神经网络 卷积自编码器 改进的卷积自编码器
在线阅读 下载PDF
基于VAE-GAN和FLCNN的不均衡样本轴承故障诊断方法 被引量:13
12
作者 张永宏 张中洋 +3 位作者 赵晓平 王丽华 邵凡 吕凯扬 《振动与冲击》 EI CSCD 北大核心 2022年第9期199-209,共11页
针对滚动轴承故障诊断中样本分布不均衡引起的模型泛化能力差、诊断精度低的问题,从两个方面展开研究:(1)故障样本增广,提出结合变分自编码器(VAE)和生成对抗网络(GAN)的VAE-GAN样本增广模型;(2)改进分类算法,提出基于焦点损失(FL)和卷... 针对滚动轴承故障诊断中样本分布不均衡引起的模型泛化能力差、诊断精度低的问题,从两个方面展开研究:(1)故障样本增广,提出结合变分自编码器(VAE)和生成对抗网络(GAN)的VAE-GAN样本增广模型;(2)改进分类算法,提出基于焦点损失(FL)和卷积神经网络(CNN)的FLCNN(focal loss and convolutional neural network)样本分类模型。在此基础上,将VAE-GAN和FLCNN融合,构建VAE-GAN+FLCNN轴承故障诊断模型。首先,将样本量少的故障类输入VAE-GAN模型,通过交替训练编码网络、生成网络和判别网络,学习出真实故障样本的数据分布,从而实现故障样本的增广;然后用增广后的数据样本训练FLCNN分类模型,完成轴承故障识别。试验对比结果表明,所提方法能够有效提升样本不均衡条件下的轴承故障诊断效果,拥有更高的Recall值和F1-score值。 展开更多
关键词 滚动轴承 变分自编码器(Vae) 生成对抗网络(GAN) 焦点损失(FL) 故障诊断
在线阅读 下载PDF
基于贝叶斯优化的SWDAE-LSTM滚动轴承早期故障预测方法研究 被引量:48
13
作者 石怀涛 尚亚俊 +2 位作者 白晓天 郭磊 马辉 《振动与冲击》 EI CSCD 北大核心 2021年第18期286-297,共12页
针对滚动轴承的早期故障特征较弱,在强噪声背景下难以有效提取以致生命周期很难准确预测的问题,提出了一种基于贝叶斯优化(BO)的滑动窗堆叠去噪自编码器(SWDAE)和长短期记忆(LSTM)网络的早期故障预测模型。使用滑动窗算法保留具有非线... 针对滚动轴承的早期故障特征较弱,在强噪声背景下难以有效提取以致生命周期很难准确预测的问题,提出了一种基于贝叶斯优化(BO)的滑动窗堆叠去噪自编码器(SWDAE)和长短期记忆(LSTM)网络的早期故障预测模型。使用滑动窗算法保留具有非线性特征和时序特征的历史正常数据,输入到模型中进行训练,使模型学习滚动轴承的正常运行状态趋势。将滚动轴承运行的数据输入到训练好的SWDAE-LSTM模型中进行实时在线监控,利用模型的预测值与真实值的残差检测滚动轴承早期故障。针对模型超参数组合选择困难的问题,使用贝叶斯优化算法对模型的超参数进行调优。最后,使用美国辛辛那提大学智能维护中心(IMSCenter)的轴承全生命周期数据以及机械故障综合模拟实验装置获取的数据进行仿真实验验证。结果表明,使用贝叶斯优化算法进行智能调参的模型和基于时域指标的方法对比,可以更早的有效检测出滚动轴承的早期故障并具有很强的鲁棒性。与其余深度学习方法比较,其模型的诊断准确率高于其他方法,进一步证明了其有效性和可靠性。 展开更多
关键词 滚动轴承 早期故障预测 贝叶斯优化(BO) 滑动窗算法 堆叠去噪自编码(SWDae) 长短时记忆(LSTM)网络
在线阅读 下载PDF
基于AE-BN的发电机滚动轴承故障诊断 被引量:2
14
作者 王进花 高媛 +1 位作者 曹洁 马佳林 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2023年第8期1896-1903,共8页
为解决风力发电机在复杂工况及耦合性、不确定性条件下故障识别的准确性问题,提出了一种基于自动编码器(AE)与贝叶斯网络(BN)的AE-BN故障诊断方法。采用AE对电流信号进行特征提取,得到能够高度表征信号的特征分量;基于故障与特征之间的... 为解决风力发电机在复杂工况及耦合性、不确定性条件下故障识别的准确性问题,提出了一种基于自动编码器(AE)与贝叶斯网络(BN)的AE-BN故障诊断方法。采用AE对电流信号进行特征提取,得到能够高度表征信号的特征分量;基于故障与特征之间的因果关系,建立由故障位置、故障状态和故障特征搭建的三层BN;将AE的特征分量与BN的拓扑结构相结合建立风力发电机故障诊断模型,解决故障诊断中的不确定性问题,提高多故障诊断的准确性。实验结果表明:所提方法能够对故障特征信号进行分析及诊断,精确辨识不同故障类型,相比K近邻算法等具有明显优势。 展开更多
关键词 故障诊断 自动编码器 贝叶斯网络 结构学习 特征提取
在线阅读 下载PDF
深度概率优化的VAE轴承状态评估 被引量:2
15
作者 尹爱军 陈小敏 +1 位作者 谭建 王昱 《振动与冲击》 EI CSCD 北大核心 2021年第20期186-192,共7页
基于振动信号的VAE(variational auto-encoder,VAE)轴承状态评估方法,由于VAE近似后验分布简化高斯假设,其隐变量低维空间表示过于简单,往往无法捕捉到振动信号真实的潜在故障特征,且利用变分证据下界评估运行状态,存在估计不准确以及... 基于振动信号的VAE(variational auto-encoder,VAE)轴承状态评估方法,由于VAE近似后验分布简化高斯假设,其隐变量低维空间表示过于简单,往往无法捕捉到振动信号真实的潜在故障特征,且利用变分证据下界评估运行状态,存在估计不准确以及受样本数目影响较大等问题。研究分布变换优化VAE近似后验分布,利用优化采样算法优化计算VAE边缘概率密度,建立一种基于深度概率优化的VAE轴承状态评估模型。通过标准化流(normalizing flows)实现VAE中的分布优化,构造复杂灵活的近似后验分布,自适应学习健康状态下轴承振动信号频谱概率分布;采用AIS(annealed importance sampling,AIS)算法,通过一系列中间分布,采样完成边缘概率密度的优化计算,建立评价指标。滚动轴承对比实验表明,所提方法对滚动轴承退化过程更为敏感,证明了该方法在轴承状态评估中的有效性。 展开更多
关键词 深度概率优化 变分自编码器 标准化流 退火重要性采样 轴承状态评估
在线阅读 下载PDF
基于ACNN-VAR的特高拱坝变形深度学习预测模型
16
作者 钟桥俊 赵二峰 +2 位作者 胡灵芝 刘峰 宋桂华 《水电能源科学》 北大核心 2025年第4期163-167,共5页
变形是大坝服役性态的直观表现,对其进行分析与预测是科学诊断大坝健康的关键措施。为解析特高拱坝变形性态,利用基于注意力机制优化的卷积神经网络(ACNN)对实测数据进行局部时间特征提取,引入变分自编码器(VAE),将回归器嵌入到VAE构建... 变形是大坝服役性态的直观表现,对其进行分析与预测是科学诊断大坝健康的关键措施。为解析特高拱坝变形性态,利用基于注意力机制优化的卷积神经网络(ACNN)对实测数据进行局部时间特征提取,引入变分自编码器(VAE),将回归器嵌入到VAE构建变分自回归器(VAR),提出基于ACNN-VAR的特高拱坝变形深度学习预测模型,该模型综合注意力机制、CNN神经网络、VAE生成模型和回归器,深度挖掘特高拱坝变形性态的特征信息,生成潜在特征向量,实现深层次变化特征提取。实例应用结果表明,建立的预测模型能够准确模拟实测值的年周期变化及局部波动,具有较高的预测精度和稳定的鲁棒性,为特高拱坝变形监测提供了新思路。 展开更多
关键词 变分自编码器 注意力机制 深度学习 潜在特征向量
在线阅读 下载PDF
暗通道先验优化的生成对抗网络图像去雾算法
17
作者 苏腾华 吕莉 +2 位作者 樊棠怀 谢海华 刘宝宏 《南昌工程学院学报》 2025年第1期81-90,共10页
针对传统图像去雾方法存在的去雾图像失真、细节丢失且泛化性差等问题,提出一种暗通道先验优化的生成对抗网络图像去雾算法。首先,设计了一种新的模型框架,通过暗通道先验优化生成对抗网络,利用物理模型提高收敛性能;其次,采用残差自编... 针对传统图像去雾方法存在的去雾图像失真、细节丢失且泛化性差等问题,提出一种暗通道先验优化的生成对抗网络图像去雾算法。首先,设计了一种新的模型框架,通过暗通道先验优化生成对抗网络,利用物理模型提高收敛性能;其次,采用残差自编码组成生成器网络,使用跳跃连接构成残差块保留图像细节信息;最后,引入马尔可夫判别器对去雾图像进行判别,反馈给生成器,进一步增强模型的去雾效果。在合成数据集以及真实数据集上进行训练测试,并在多种去雾场景下进行实验,结果表明该算法在多个数据集下的评价指标都为最高值,在多种去雾场景下均有良好表现,与传统暗通道先验算法相比性能提升了23%,并且该算法能够有效去除带雾图像中的雾层,较好还原图像细节内容,保证了较高的视觉质量。 展开更多
关键词 图像去雾 生成对抗网络 暗通道先验 残差自编码 马尔可夫判别器
在线阅读 下载PDF
基于SVD和SAE的医学图像多功能零水印算法 被引量:2
18
作者 赵彦霞 孙洁丽 +1 位作者 周增慧 邢胜 《电信科学》 北大核心 2017年第11期102-111,共10页
针对医学图像的版权保护和篡改定位问题,提出了一种多功能零水印算法。获取构造零顽健水印和半脆弱水印的信息矩阵,并分别与原始顽健和半脆弱水印进行异或运算,构造零顽健和零半脆弱水印图像。实验结果证明,提取的水印效果较好,算法能... 针对医学图像的版权保护和篡改定位问题,提出了一种多功能零水印算法。获取构造零顽健水印和半脆弱水印的信息矩阵,并分别与原始顽健和半脆弱水印进行异或运算,构造零顽健和零半脆弱水印图像。实验结果证明,提取的水印效果较好,算法能很好地抵抗常见攻击,特别是抵抗强度较大的攻击的效果较好。 展开更多
关键词 医学图像 多功能零水印 离散小波变换 奇异值分解 堆叠自编码器
在线阅读 下载PDF
融合人耳听觉特性与SAE模型的船舶辐射噪声分类方法 被引量:1
19
作者 李海涛 刘振 +1 位作者 陈喆 邱家兴 《舰船科学技术》 北大核心 2020年第15期172-176,共5页
深度学习技术的发展为船舶辐射噪声分类识别提供了一个新的方法。本文从人耳听觉角度出发,提出一种融合人耳听觉特性与堆栈自编码神经网络的船舶辐射噪声分类方法。该方法使用Mel滤波器模拟人耳对噪声信号频率的选择,借助SAE网络逐层自... 深度学习技术的发展为船舶辐射噪声分类识别提供了一个新的方法。本文从人耳听觉角度出发,提出一种融合人耳听觉特性与堆栈自编码神经网络的船舶辐射噪声分类方法。该方法使用Mel滤波器模拟人耳对噪声信号频率的选择,借助SAE网络逐层自动提取舰船辐射噪声人耳听觉特征量的深度特征,并将该特征用于分类识别。针对实测船舶辐射噪声信号进行试验,结果表明,本文提出的方法具有91.19%的识别正确率。 展开更多
关键词 人耳听觉特性 堆栈自编码神经网络 分类
在线阅读 下载PDF
基于改进SAE网络的自然图像分类 被引量:2
20
作者 王恬 仇春春 +1 位作者 俞婧 许金鑫 《信息技术》 2016年第8期1-4,8,共5页
针对自然图像分类算法的精度低以及网络训练耗时过长的实际问题,提出了一种结合卷积自动编码器(Convolutional Auto-Encoders,CAE)的改进堆叠自动编码器(Stacked Auto-encoders,SAE)网络。研究了CAE学习局部特征的能力,并将其作为整个SA... 针对自然图像分类算法的精度低以及网络训练耗时过长的实际问题,提出了一种结合卷积自动编码器(Convolutional Auto-Encoders,CAE)的改进堆叠自动编码器(Stacked Auto-encoders,SAE)网络。研究了CAE学习局部特征的能力,并将其作为整个SAE网络的第一层。在提取初步特征的同时降低输入的维度,解决了网络参数过多,训练过程慢的问题。同时对改进的SAE网络进行微调,缩减训练时间,并提取更有利于分类的图像高层特征。实验结果表明,改进SAE网络对于自然图像的分类具有更好的普适性,可以有效地提高分类准确度,并加快网络训练速度。 展开更多
关键词 图像分类 改进Sae网络 卷积自动编码器 微调 最大池化
在线阅读 下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部