期刊文献+
共找到820篇文章
< 1 2 41 >
每页显示 20 50 100
基于AE-Xgboost的室内火灾温度变化预测模型
1
作者 宋岩升 肖广 +1 位作者 王浩然 董龙威 《沈阳建筑大学学报(自然科学版)》 北大核心 2025年第5期695-704,共10页
使用机器学习算法构建一个预测模型,准确地预测室内火灾中温度的变化,保障个人生命和财产安全。采用AE对合成的温度数据进行降维,然后利用所得参数来构建Xgboost模型(AE-Xgboost),最后通过一个火灾数值模拟案例和一系列火灾测试的数据验... 使用机器学习算法构建一个预测模型,准确地预测室内火灾中温度的变化,保障个人生命和财产安全。采用AE对合成的温度数据进行降维,然后利用所得参数来构建Xgboost模型(AE-Xgboost),最后通过一个火灾数值模拟案例和一系列火灾测试的数据验证AE-Xgboost的预测能力。AE-Xgboost与其他7个预测模型相比,R^(2)具有最大值0.999,均方差MSE具有最小值4.93×10^(-5);AE-Xgboost对11组验证数据进行预测后,所得R^(2)值均高于0.96。AE-Xgboost在预测室内火灾中温度变化方面具有较高的预测精度和较强的泛化能力,且适用于t 2型和缓慢增长类型的火灾。 展开更多
关键词 室内火灾温度 自编码器 极限梯度提升 预测模型
在线阅读 下载PDF
基于AE并融合GMM与K-means的无监督颤振监测研究
2
作者 王丹 张凤南 +1 位作者 马岩尉 刘博 《工具技术》 北大核心 2025年第2期139-145,共7页
金属切削过程中颤振的监测方法大致可分为颤振特征提取和聚类分析,其中提取方法有一定的局限性。本文提出一种基于大量未标记动态信号的无监督铣削颤振监测方法,该方法不依赖加工参数和环境,不需要标签,稳定性强,切削力信号来自多次铣... 金属切削过程中颤振的监测方法大致可分为颤振特征提取和聚类分析,其中提取方法有一定的局限性。本文提出一种基于大量未标记动态信号的无监督铣削颤振监测方法,该方法不依赖加工参数和环境,不需要标签,稳定性强,切削力信号来自多次铣削实验。该方法基于自动编码将信号的每一段压缩成二维,使用基于高斯混合模型和K-means合并的混合聚类方法对压缩信号进行聚类。所提出的方法在所有6个典型的无监督评价指标中都优于高斯混合模型和K-means算法。 展开更多
关键词 颤振监测 高斯混合模型 K-MEANS 无监督聚类 自动编码器
在线阅读 下载PDF
基于LSTM-DAE谱聚类的终端区飞行轨迹模式识别方法
3
作者 张召悦 许程 《空军工程大学学报》 北大核心 2025年第4期40-47,共8页
为解决终端区飞行轨迹数据维度高、特征信息无法准确提取的问题,提出了一种基于LSTM-DAE谱聚类进行轨迹模式识别的方法。首先,采用LSTM-DAE网络将处理后的轨迹数据集进行降维和特征提取,进而更加准确地捕捉轨迹的非线性特征;其次,借助... 为解决终端区飞行轨迹数据维度高、特征信息无法准确提取的问题,提出了一种基于LSTM-DAE谱聚类进行轨迹模式识别的方法。首先,采用LSTM-DAE网络将处理后的轨迹数据集进行降维和特征提取,进而更加准确地捕捉轨迹的非线性特征;其次,借助提取到的轨迹特征,采用谱聚类完成模式划分;最后,以天津滨海机场进场飞行轨迹数据进行实例分析。实验表明:该方法能够将高维飞行轨迹提取后进行准确聚类,可划分出6个类别的轨迹簇,实现更高的聚类质量,该方法可为有效识别终端区飞行轨迹模式特征提供支持。 展开更多
关键词 飞行轨迹 轨迹聚类 LSTM 深度自编码
在线阅读 下载PDF
基于F-SAE网络的GIS设备局部放电噪声抑制方法 被引量:2
4
作者 张彦军 徐肃 +4 位作者 张瑞强 刘轶 李智玲 卢霄霞 余传祥 《电工电能新技术》 北大核心 2025年第1期118-128,共11页
在进行气体绝缘金属封闭开关设备(GIS)早期局部放电(PD)监测时,信号容易受到噪声干扰,从而造成对PD故障的误判。为减少噪声对PD信号的影响,本文提出一种基于分数阶随机自动编码器(F-SAE)的噪声抑制方法。该方法以自动编码器为核心,采用T... 在进行气体绝缘金属封闭开关设备(GIS)早期局部放电(PD)监测时,信号容易受到噪声干扰,从而造成对PD故障的误判。为减少噪声对PD信号的影响,本文提出一种基于分数阶随机自动编码器(F-SAE)的噪声抑制方法。该方法以自动编码器为核心,采用Tchebichef矩函数转换一维PD信号的正交特性进行噪声抑制。该方法在网络反向传播过程中引入分数阶梯度下降以提升网络层之间的权重信息更新效率,并通过随机奇异值变换压缩权重信息,共同提升F-SAE网络对PD信号的降噪性能。本文对真实GIS设备下0.5 dB、1.5 dB和5 dB的三种染噪PD信号进行降噪,其中0.5 dB染噪PD信号去噪后的信噪比分别为5.48 dB、6.28 dB和6.92 dB以及均方根差百分比分别为42.51%、57.28%和58.14%。并且降噪性能皆优于所对比的小波变换算法和去噪自动编码器。 展开更多
关键词 气体绝缘金属封闭开关设备 局部放电 噪声抑制 分数阶随机自动编码器
在线阅读 下载PDF
基于DCCA-DAE模型的传感器故障检测
5
作者 黄凯 王薇 +2 位作者 朱永生 任智军 林昙涛 《振动.测试与诊断》 北大核心 2025年第4期674-681,840,841,共10页
传感器作为复杂装备监测系统的关键组成部分,若发生故障会引起误报警,极大影响复杂机械系统状态监测的可靠性。针对该难题,笔者从系统角度出发,提出一种基于去趋势互相关分析(detrended cross-correlation analysis,简称DCCA)和双尺度... 传感器作为复杂装备监测系统的关键组成部分,若发生故障会引起误报警,极大影响复杂机械系统状态监测的可靠性。针对该难题,笔者从系统角度出发,提出一种基于去趋势互相关分析(detrended cross-correlation analysis,简称DCCA)和双尺度自编码器(dual auto encoder,简称DAE)的传感器故障检测方法,记作DCCA-DAE。首先,采用DCCA方法建立耦合网络,将数据从欧氏空间扩展到拓扑空间,实现对系统多源多态监测数据蕴含信息的全面表征;其次,构建基于DAE的异常检测方法,消除工况变化对传感器监测序列产生的影响,实现工况复杂变化下的系统传感器故障准确检测;最后,利用某电厂汽轮机组历史数据,验证所提方法的综合性能。结果表明,DCCA-DAE模型特征提取能力强,检测精度显著优于传统支持向量描述和自编码器等方法,在工业场景中传感器故障检测领域具有良好的应用前景。 展开更多
关键词 传感器故障检测 去趋势互相关 耦合关系网络 自编码器
在线阅读 下载PDF
基于VMD-CAE的无监督结构损伤识别研究
6
作者 王梦倩 康帅 +1 位作者 李传飞 董正方 《振动与冲击》 北大核心 2025年第11期309-320,共12页
为了进一步扩展深度学习方法在基于振动信号的结构损伤识别中的应用,提出了一种基于变分模态分解(variational mode decomposition,VMD)和卷积自编码(convolutional auto-encoder,CAE)相结合的无监督结构损伤识别方法。首先,利用VMD对... 为了进一步扩展深度学习方法在基于振动信号的结构损伤识别中的应用,提出了一种基于变分模态分解(variational mode decomposition,VMD)和卷积自编码(convolutional auto-encoder,CAE)相结合的无监督结构损伤识别方法。首先,利用VMD对振动信号进行分解,去除噪声和一些无关成分的影响,选取与结构自振特性相关的成分作为有效分量;然后通过叠加有效分量作为CAE模型的输入,进而重构信号,通过学习健康样本数据的特征,得到最大重构误差作为判断结构是否损坏的阈值。最后将该方法应用到IASC-ASCE SHM Benchmark结构试验数据和卡塔尔大学看台试验数据,并将结果与其他模型进行了对比,结果表明该方法在两个数据集上的识别结果都更加准确。即使当样本中含有噪声时,也能显著提高噪声样本的识别精度,具有较强的抗噪能力。 展开更多
关键词 深度学习 结构损伤识别 无监督 变分模态分解(VMD) 卷积自编码(Cae)
在线阅读 下载PDF
基于NSSAE的批次发酵过程质量相关与质量无关故障检测与诊断
7
作者 刘忠 章政 +1 位作者 楼旭阳 朱金林 《食品工业科技》 北大核心 2025年第3期1-10,共10页
为了解决批次发酵过程中质量无关故障所可能引起的不必要停机,本文提出了噪声半监督堆叠自编码器(Noised semi-supervised stacked auto-encoder,NSSAE)算法以区分质量相关与质量无关故障。首先,基于互信息计算过程变量与质量变量间互信... 为了解决批次发酵过程中质量无关故障所可能引起的不必要停机,本文提出了噪声半监督堆叠自编码器(Noised semi-supervised stacked auto-encoder,NSSAE)算法以区分质量相关与质量无关故障。首先,基于互信息计算过程变量与质量变量间互信息,并对数据加入噪声以提高算法对质量相关信息挖掘能力。其次,构建NSSAE的过程监测模型,在模型的首层自编码器和最后一层自编码器中构建故障检测和质量相关检测指标,并利用核密度估计计算对应的控制极限。最后,利用深度重构贡献图(Deep reconstruction-based contribution,DRBC)定位故障根源。从数值仿真和乳酸菌批次发酵实验结果可知,本文提出的NSSAE算法能够准确区分质量相关与无关故障,首层的残差空间的检测指标的故障检测率接近100%,最后一层隐空间的检测指标能够准确识别质量相关故障和质量无关故障。基于DRBC诊断方法能在故障发生后准确识别发生故障的变量,该研究结果为批次发酵过程质量相关与质量无关故障监测问题提出了一种切实可行的过程监测方法。 展开更多
关键词 批次发酵过程 质量相关故障 噪声半监督堆叠自编码器 故障检测与诊断 深度重构贡献图
在线阅读 下载PDF
基于DCVAE-ELM的立铣刀磨损状态识别方法
8
作者 杨超 李宏坤 +2 位作者 彭德锋 欧佳玉 王朝东 《振动.测试与诊断》 北大核心 2025年第4期831-837,852,共8页
在立铣刀铣削过程中,由于工件较硬、切削深度较大、采用摆线铣加工方式使刀具磨损较快、空刀段较多,无法准确识别刀具磨损状态。针对这种情况,提出了一种利用深度约束变分自编码器(deep-constrained variational auto-encoder,简称DCVAE... 在立铣刀铣削过程中,由于工件较硬、切削深度较大、采用摆线铣加工方式使刀具磨损较快、空刀段较多,无法准确识别刀具磨损状态。针对这种情况,提出了一种利用深度约束变分自编码器(deep-constrained variational auto-encoder,简称DCVAE)和极限学习机(extreme learning machine,简称ELM)的刀具磨损状态识别方法。首先,将电流有效值信号、加速度信号和声压信号进行融合,将其转化为三维彩色图像;其次,采用DCVAE模型对彩色图像中包含的数据进行降维处理,提取其中的隐藏特征信息,增加编码器以增强提取数据特征的能力,利用约束条件使特征分布进一步集中;然后,使用特征可视化技术直观表现刀具不同磨损状态的特征类聚;最后,采用极限学习机对特征进行分类识别,得到刀具磨损状态的识别准确率为95.07%。通过实验分析及模型对比表明,本研究方法抗干扰能力强、稳定性好,能够准确识别刀具磨损状态。 展开更多
关键词 立铣刀磨损 多信息融合 极限学习机 刀具磨损状态识别 深度约束变分自编码器
在线阅读 下载PDF
基于ELMAE的半监督集成学习软测量方法
9
作者 李友维 金怀平 +1 位作者 杨彪 陈祥光 《控制工程》 北大核心 2025年第4期653-663,共11页
软测量技术广泛用于流程工业中实时估计难以测量的关键变量,但其性能常常受限于标记样本缺乏、特征提取不当、单一模型性能不佳等问题。为此,提出了一种新的半监督集成学习软测量方法。该方法将隐特征提取、半监督学习、集成学习融合到... 软测量技术广泛用于流程工业中实时估计难以测量的关键变量,但其性能常常受限于标记样本缺乏、特征提取不当、单一模型性能不佳等问题。为此,提出了一种新的半监督集成学习软测量方法。该方法将隐特征提取、半监督学习、集成学习融合到同一建模框架下,实现了优势互补。首先,通过极限学习机自编码器(extreme learning machine auto-encoder,ELMAE)对过程数据进行多样性隐特征提取,进而建立多样性高斯过程回归(Gaussian process regression,GPR)基模型;然后,通过多学习器伪标记生成策略为每个基模型生成伪标记样本,进而扩充标记样本集;最后,利用扩充的标记样本集重新训练基模型后,对基模型进行集成,从而构建最终的软测量模型。将所提方法应用在金霉素发酵过程的基质浓度预测中,实验结果验证了所提方法的有效性和优越性。 展开更多
关键词 软测量方法 半监督学习 集成学习 极限学习机自编码器 伪标记 协同训练
在线阅读 下载PDF
一种HRRP重构识别方法:带标签约束的SDAE-CNN
10
作者 尹建国 盛文 +1 位作者 赵蒙 江河 《现代防御技术》 北大核心 2025年第3期32-41,共10页
雷达空中目标高分辨距离像(high resolution range profile, HRRP)常被用于开展目标识别,在实际运行过程中,数据样本不完备和噪声干扰往往会给雷达目标识别带来挑战。为克服这一挑战,将堆栈去噪自编码器(stacked denoising auto-encoder... 雷达空中目标高分辨距离像(high resolution range profile, HRRP)常被用于开展目标识别,在实际运行过程中,数据样本不完备和噪声干扰往往会给雷达目标识别带来挑战。为克服这一挑战,将堆栈去噪自编码器(stacked denoising auto-encoders, SDAE)和卷积神经网络(convolutional neural networks,CNN)结合起来用于HRRP的去噪重构与识别,并添加标签约束以加速模型收敛。SDAE可以对HRRP数据进行去噪重构,增强数据质量,扩充目标数据集,并引入标签约束,强化隐特征与所属类别相关联的能力,加速模型收敛,CNN用于对HRRP进行分类。实验结果表明,所提方法在小样本、强噪声场景下的目标识别中展现了较优的识别性能和识别精度,能够在一定程度克服样本少、噪声高对HRRP识别的不良影响。 展开更多
关键词 高分辨距离像 目标识别 数据不完备 噪声干扰 堆栈去噪自编码器 卷积神经网络
在线阅读 下载PDF
基于SSAE和改进的IndRNN电力物联网入侵检测方法研究
11
作者 闵永仓 王勇 《计算机应用与软件》 北大核心 2025年第10期358-366,共9页
随着物联网技术和电力系统的不断融合,通过物联网终端设备向电力系统发起的入侵层出不穷,为了提高防护能力,提出一种基于堆栈稀疏自编码器(SSAE)和独立循环神经网络(IndRNN)的混合入侵检测模型。利用SSAE解决电力物联网高维数据充斥大... 随着物联网技术和电力系统的不断融合,通过物联网终端设备向电力系统发起的入侵层出不穷,为了提高防护能力,提出一种基于堆栈稀疏自编码器(SSAE)和独立循环神经网络(IndRNN)的混合入侵检测模型。利用SSAE解决电力物联网高维数据充斥大量冗余特征问题,并通过改进的IndRNN捕获时序信息,引入分层注意力机制,对关键特征进行增强。实验结果表明,该模型在准确率和误报率达到99.36%和0.67%的同时还大大缩短了检测时间,是一种有效电力物联网入侵检测模型。 展开更多
关键词 堆栈稀疏自编码器 独立循环神经网络 入侵检测 电力物联网
在线阅读 下载PDF
基于KPCA-SAE-BP模型的有源干扰识别算法
12
作者 赵忠臣 刘利民 +2 位作者 解辉 韩壮志 荆贺 《现代防御技术》 北大核心 2025年第3期159-166,共8页
针对强噪声环境下雷达新型有源干扰识别准确率不高的问题,提出了一种KPCA-SAE-BP网络算法。提取干扰信号时域、频域、波形域、小波域、双谱域等特征构建67维输入空间,经过核主成分分析(kernel principal component analysis,KPCA)将高... 针对强噪声环境下雷达新型有源干扰识别准确率不高的问题,提出了一种KPCA-SAE-BP网络算法。提取干扰信号时域、频域、波形域、小波域、双谱域等特征构建67维输入空间,经过核主成分分析(kernel principal component analysis,KPCA)将高维数据进行非线性降维与重构,利用SAE-BP神经网络完成分类识别。仿真结果表明,在干噪比(JNR)大于-1 dB的强噪声环境中,KPCA-SAE-BP网络算法对6种新型有源干扰的识别准确率达到90%以上,训练与识别时间少于0.7 s。相同参数条件下,与经典BP神经网络、SAE-BP网络、KPCA-BP网络、GA-BP网络相比,具有更好的检测识别性能。 展开更多
关键词 有源干扰识别 核主成分分析 堆叠自编码器 反向传播神经网络 特征提取 特征降维
在线阅读 下载PDF
一种融合AutoEncoder与CNN的混合算法用于图像特征提取 被引量:20
13
作者 刘兴旺 王江晴 徐科 《计算机应用研究》 CSCD 北大核心 2017年第12期3839-3843,3847,共6页
深度学习方法在图像的特征提取方面具有优势。针对传统特征提取方法需要先验知识的不足,提出一种自动编码器(Auto Encoder)与卷积神经网络(convolutional neural network,CNN)相结合的深度学习特征提取方法。该方法给Auto Encoder加入... 深度学习方法在图像的特征提取方面具有优势。针对传统特征提取方法需要先验知识的不足,提出一种自动编码器(Auto Encoder)与卷积神经网络(convolutional neural network,CNN)相结合的深度学习特征提取方法。该方法给Auto Encoder加入快速稀疏性控制,据此对图像训练出基本构件,并初始化CNN的卷积核;同时,给CNN加入了滤波机制,使输出特征保持稀疏性。实验结果表明,在Minist手写数字库和Yale人脸库的识别效果上,提出的特征提取方法均取得了较好的结果,实验进一步通过交叉验证T检验指出,引入滤波机制的特征提取模型优于没有采用滤波机制的模型。 展开更多
关键词 深度学习 卷积神经网络 自动编码器 滤波 稀疏控制
在线阅读 下载PDF
基于Auto Encoder的智能监控指纹识别系统
14
作者 常峰 贺元骅 《中国测试》 CAS 北大核心 2015年第8期71-74,93,共5页
针对目前已有的嵌入式指纹识别系统往往采用手工提取,不能自动学习并提取识别所需的特征及识别正确率仍然不高的缺点,提出一种基于自动编码器(Auto Encoder)和LSSVM的指纹识别系统。首先,提出采用FPS200作为指纹传感器采集指纹数据,然... 针对目前已有的嵌入式指纹识别系统往往采用手工提取,不能自动学习并提取识别所需的特征及识别正确率仍然不高的缺点,提出一种基于自动编码器(Auto Encoder)和LSSVM的指纹识别系统。首先,提出采用FPS200作为指纹传感器采集指纹数据,然后将采集的数据经过滤波和二值化等预处理,通过比较差异算法获得Auto Encoder中的权值和偏置等参数,从而得到训练好的Auto Encoder用于指纹图像特征提取。最后,将自动提取的特征进行训练和分类,将投票最多的分类作为指纹识别的结果。通过测试表明,系统能较精确地实现指纹识别,具有收敛速度快、正确识别率高和匹配时间短的优点。 展开更多
关键词 指纹 识别率 匹配 自动编码器
在线阅读 下载PDF
基于深度SSDAE网络的刀具磨损状态识别 被引量:5
15
作者 郭润兰 尉卫卫 +1 位作者 王广书 黄华 《振动.测试与诊断》 EI CSCD 北大核心 2024年第2期305-312,410,411,共10页
针对刀具磨损状态识别过程中采集数据量大、干扰信号复杂且需人为选择特征参数的问题,为提高刀具磨损状态识别模型的鲁棒性与泛化性,提出了一种数据驱动下深度堆叠稀疏降噪自编码(stacking sparse denoising auto-encoder,简称SSDAE)网... 针对刀具磨损状态识别过程中采集数据量大、干扰信号复杂且需人为选择特征参数的问题,为提高刀具磨损状态识别模型的鲁棒性与泛化性,提出了一种数据驱动下深度堆叠稀疏降噪自编码(stacking sparse denoising auto-encoder,简称SSDAE)网络的刀具磨损状态识别方法,实现隐藏在数据中深层次的数据特征自动挖掘。首先,将原始振动信号分解为一系列固有模态分量(intrinsic mode function,简称IMF),并采用皮尔逊相关系数法选取了最优固有模态来组合一个新的信号;其次,采用SSDAE网络自适应提取特征后对刀具磨损阶段进行了状态识别,识别精度达到98%;最后,对网络模型进行实验验证,并与最常用的刀具磨损状态识别方法进行了对比。实验结果表明,所提出的方法能够很好地处理非平稳振动信号,对不同刀具磨损阶段状态的识别效果良好,并具有较好的泛化性能和可靠性。 展开更多
关键词 深度堆叠稀疏自编码网络 变分模态分解 K-最近邻分类器 自适应特征提取 状态识别
在线阅读 下载PDF
基于NVAE和OB-Mix的小样本数据增强方法 被引量:2
16
作者 杨玮 钟名锋 +3 位作者 杨根 侯至丞 王卫军 袁海 《计算机工程与应用》 CSCD 北大核心 2024年第2期103-112,共10页
由于深度学习模型对海量标注数据的依赖性较高,导致目前许多前沿性目标检测理论难以适用于工业检测领域。为此,提出一种基于NVAE图像生成和OB-Mix数据增强的小样本数据扩充方法。具体方法是通过NVAE构建检测目标的数据分布模型,再通过... 由于深度学习模型对海量标注数据的依赖性较高,导致目前许多前沿性目标检测理论难以适用于工业检测领域。为此,提出一种基于NVAE图像生成和OB-Mix数据增强的小样本数据扩充方法。具体方法是通过NVAE构建检测目标的数据分布模型,再通过采样潜变量的方式生成与真实目标图像属于同一分布的全新目标图像。在得到生成目标图像后,提出了OB-Mix数据增强策略,将生成目标图像与背景图像进行随机位置融合以构建出新的图像数据,从而提高网络的定位能力及泛化能力。方法在仅使用474张标注图像以及400张无检测目标的背景图像情况下,使YOLOv5的检测精确率达到95.86%,相比于不使用该方法的结果提高了17.60个百分点。 展开更多
关键词 数据增强 小样本 数据生成 新派变分自编码器(NVae) 表面缺陷检测 深度学习
在线阅读 下载PDF
基于IDT-SAE-ELM的煤矿电缆短路故障识别方法 被引量:1
17
作者 王清亮 李泓朴 +1 位作者 李书超 王伟峰 《西安科技大学学报》 北大核心 2024年第6期1205-1217,共13页
针对现有方法无法有效提取煤矿电缆短路故障深层特征而导致故障识别准确率和类型判定精度低的问题,提出了一种基于IDT-SAE-ELM的短路故障识别方法。首先采用IDT技术对传统SAE模型进行改进,以提高其高效捕获故障样本深层特征的能力;然后... 针对现有方法无法有效提取煤矿电缆短路故障深层特征而导致故障识别准确率和类型判定精度低的问题,提出了一种基于IDT-SAE-ELM的短路故障识别方法。首先采用IDT技术对传统SAE模型进行改进,以提高其高效捕获故障样本深层特征的能力;然后利用Adam算法优化IDT-SAE模型参数,实现了从原始电流信号自动获取短路故障特征量;最后利用ELM模型替代Softmax构造故障分类器,以提高SAE模型对特征差异性小的故障类型辨识能力,实现对煤矿电缆短路故障的识别与类型的智能判定。以煤矿电网实际参数进行短路故障仿真,分别利用Loss曲线与T-分布随机近邻嵌入算法可视化分析所提方法的抗过拟合能力与短路故障深层特征挖掘能力,采用准确率和精度对所提方法进行评价,结果表明:所提方法相较于传统SAE具有更好的故障特征提取能力和抗过拟合能力;所提方法对电缆短路故障的识别准确率稳定在99%左右,相较于RF、BPNN、ELM等人工智能方法,准确率分别提高了7.47%、5.82%、5.42%;在严重噪声干扰下,所提方法短路故障识别准确率始终保持在98.75%以上,有效提高了煤矿电缆短路故障识别准确率和类型判定精度,能够为越级跳闸原因判别、短路事故的分析与处理提供重要依据。 展开更多
关键词 煤矿 短路故障 堆栈自编码器 极限学习机 Dropout集成技术
在线阅读 下载PDF
基于AutoEncoder的油气管道控制系统异常状态监测方法 被引量:6
18
作者 梁凤勤 高媛 +3 位作者 刘功银 黄建国 周权 盛瀚民 《电子测量与仪器学报》 CSCD 北大核心 2019年第12期10-18,共9页
压缩机控制电路的健康状态管理在管道运输中至关重要。通常油气管道压缩机系统部署地点远离城市,环境恶劣,且负荷高、工作时间长,因此故障频发。构建可靠的健康状态检测模型通常需要大量的故障样本,然而在实际数据中,故障样本相对稀缺... 压缩机控制电路的健康状态管理在管道运输中至关重要。通常油气管道压缩机系统部署地点远离城市,环境恶劣,且负荷高、工作时间长,因此故障频发。构建可靠的健康状态检测模型通常需要大量的故障样本,然而在实际数据中,故障样本相对稀缺。采用一种基于自编码器(auto encoder,AE)的单分类方法对油气管道控制系统的异常状态进行辨识。该模型仅需对系统的正常工作状态进行学习,通过编码器可实现特征的自适应提取,从而对数据进行抽象表示,并获得较好的非线性映射能力;当数据分布异常时,系统可区分其与正常信号间的差异,并进行预警。实验部分采用西部输油管道控制系统中实地获取的通信解码信号以及电源信号进行验证,并以单分类支持向量机方法作对比实验,表明了所提出方法的有效性。 展开更多
关键词 故障预警 故障诊断和健康管理 单分类学习 自编码器 深度学习
在线阅读 下载PDF
基于VAE-LSTM模型的无人机飞行数据异常检测 被引量:6
19
作者 王从宝 张安思 +2 位作者 杨磊 张保 李松 《电子测量技术》 北大核心 2024年第3期187-196,共10页
无人机飞行数据是反映其自身飞行安全的重要状态参数,通过对飞行数据进行异常检测,是提高无人机整体飞行安全性的关键举措。尽管基于数据驱动方法不需专家先验知识和精确的物理模型,但缺乏参数选择且检测网络结构模型单一,使得检测模型... 无人机飞行数据是反映其自身飞行安全的重要状态参数,通过对飞行数据进行异常检测,是提高无人机整体飞行安全性的关键举措。尽管基于数据驱动方法不需专家先验知识和精确的物理模型,但缺乏参数选择且检测网络结构模型单一,使得检测模型由于参数过多导致过拟合以及无法有效捕捉数据异常模式的问题。文中结合变分自编码器和长短期记忆网络的优势,提出了一种基于VAE-LSTM的无人机飞行数据异常检测模型方法。首先,引入肯德尔相关性分析方法用于选择相关依赖的飞行数据参数集;其次,将具有相关性的参数集对所设计的VAE-LSTM深度混合模型进行训练,学习不同数据特征之间的关系映射;最后,以无监督异常检测方式在真实多维无人机飞行数据进行验证。实验结果表明,VAE-LSTM的精密度、检测率、准确率、F1分数及误检率的各项平均性能指标分别达到95.24%、98.71%、98.8%、96.82%、1.31%,相比于KNN、OC-SVM、VAE、LSTM模型,整体上展现出较好异常检测性能。 展开更多
关键词 无人机飞行数据 Kendall相关性 变分自编码器 长短期记忆网络 混合模型 异常检测
在线阅读 下载PDF
基于SCG优化SSAE-FFNN的电能质量复合扰动深度特征提取与分类 被引量:5
20
作者 丁皓月 吕干云 +3 位作者 史明明 费骏韬 俞明 吴启宇 《电力工程技术》 北大核心 2024年第3期99-110,共12页
随着智能电网的发展,电能质量问题已遍布电网并威胁着电网的安全稳定,且电能质量监测数据日渐庞大,因此实现大规模系统中电能质量扰动(power quality disturbances,PQDs)的深度特征提取及智能分类识别对电力系统污染检测与管理具有重要... 随着智能电网的发展,电能质量问题已遍布电网并威胁着电网的安全稳定,且电能质量监测数据日渐庞大,因此实现大规模系统中电能质量扰动(power quality disturbances,PQDs)的深度特征提取及智能分类识别对电力系统污染检测与管理具有重要意义。为此,文中提出一种基于堆叠稀疏自编码器(stacked sparse auto encoder,SSAE)和前馈神经网络(feedforward neural network,FFNN)的电能质量复合扰动分类方法。首先,基于IEEE标准构建PQDs仿真模型。然后,建立基于SSAE-FFNN的PQDs分类模型,并引入缩放共轭梯度(scaled conjugate gradient,SCG)算法对模型进行优化,以提高梯度下降速度和网络训练效率。接着,为有效降低堆叠网络的重构损失同时提取出深度的低维特征,构建SSAE的逐层训练集及微调策略。最后,通过算例分析验证文中方法的分类效果、鲁棒性、泛化性和适用场景规模。结果表明,文中方法能够有效识别电能质量复合扰动,对含误差扰动和某地市电网的21组实测扰动录波数据也有较高的分类准确率。 展开更多
关键词 电能质量 复合扰动分类 堆叠稀疏自编码器(SSae) 深度特征提取 缩放共轭梯度(SCG) 前馈神经网络(FFNN)
在线阅读 下载PDF
上一页 1 2 41 下一页 到第
使用帮助 返回顶部