Particle swarm optimization (PSO) is a new heuristic algorithm which has been applied to many optimization problems successfully. Attribute reduction is a key studying point of the rough set theory, and it has been ...Particle swarm optimization (PSO) is a new heuristic algorithm which has been applied to many optimization problems successfully. Attribute reduction is a key studying point of the rough set theory, and it has been proven that computing minimal reduc- tion of decision tables is a non-derterministic polynomial (NP)-hard problem. A new cooperative extended attribute reduction algorithm named Co-PSAR based on improved PSO is proposed, in which the cooperative evolutionary strategy with suitable fitness func- tions is involved to learn a good hypothesis for accelerating the optimization of searching minimal attribute reduction. Experiments on Benchmark functions and University of California, Irvine (UCI) data sets, compared with other algorithms, verify the superiority of the Co-PSAR algorithm in terms of the convergence speed, efficiency and accuracy for the attribute reduction.展开更多
Attribute reduction in the rough set theory is an important feature selection method, but finding a minimum attribute reduction has been proven to be a non-deterministic polynomial (NP)-hard problem. Therefore, it i...Attribute reduction in the rough set theory is an important feature selection method, but finding a minimum attribute reduction has been proven to be a non-deterministic polynomial (NP)-hard problem. Therefore, it is necessary to investigate some fast and effective approximate algorithms. A novel and enhanced quantum-inspired shuffled frog leaping based minimum attribute reduction algorithm (QSFLAR) is proposed. Evolutionary frogs are represented by multi-state quantum bits, and both quantum rotation gate and quantum mutation operators are used to exploit the mechanisms of frog population diversity and convergence to the global optimum. The decomposed attribute subsets are co-evolved by the elitist frogs with a quantum-inspired shuffled frog leaping algorithm. The experimental results validate the better feasibility and effectiveness of QSFLAR, comparing with some representa- tive algorithms. Therefore, QSFLAR can be considered as a more competitive algorithm on the efficiency and accuracy for minimum attribute reduction.展开更多
A new approach to knowledge acquisition in incomplete information system with fuzzy decisions is proposed. In such incomplete information system, the universe of discourse is classified by the maximal tolerance classe...A new approach to knowledge acquisition in incomplete information system with fuzzy decisions is proposed. In such incomplete information system, the universe of discourse is classified by the maximal tolerance classes, and fuzzy approximations are defined based on them. Three types of relative reducts of maximal tolerance classes are then proposed, and three types of fuzzy decision rules based on the proposed attribute description are defined. The judgment theorems and approximation discernibility functions with respect to them are presented to compute the relative reduct by using Boolean reasoning techniques, from which we can derive optimal fuzzy decision rules from the systems. At last, three types of relative reducts of the system and their computing methods are given.展开更多
This paper proposes,from the viewpoint of relation matrix,a new algorithm of attribute reduction for decision systems.Two new and relative reasonable indices are first defined to measure significance of the attributes...This paper proposes,from the viewpoint of relation matrix,a new algorithm of attribute reduction for decision systems.Two new and relative reasonable indices are first defined to measure significance of the attributes in decision systems and then a heuristic algorithm of attribute reduction is formulated.Moreover,the time complexity of the algorithm is analyzed and it is proved to be complete.Some numerical experiments are also conducted to access the performance of the presented algorithm and the results demonstrate that it is not only effective but also efficient.展开更多
Decision rules mining is an important issue in machine learning and data mining.However,most proposed algorithms mine categorical data at single level,and these rules are not easily understandable and really useful fo...Decision rules mining is an important issue in machine learning and data mining.However,most proposed algorithms mine categorical data at single level,and these rules are not easily understandable and really useful for users.Thus,a new approach to hierarchical decision rules mining is provided in this paper,in which similarity direction measure is introduced to deal with hybrid data.This approach can mine hierarchical decision rules by adjusting similarity measure parameters and the level of concept hierarchy trees.展开更多
The basic principles of IF/THEN rules in rough set theory are analyzed first, and then the automatic process of knowledge acquisition is given. The numerical data is qualitatively processed by the classification of me...The basic principles of IF/THEN rules in rough set theory are analyzed first, and then the automatic process of knowledge acquisition is given. The numerical data is qualitatively processed by the classification of membership functions and membership degrees to get the normative decision table. The regular method of relations and the reduction algorithm of attributes are studied. The reduced relations are presented by the multi-representvalue method and its algorithm is offered. The whole knowledge acquisition process has high degree of automation and the extracted knowledge is true and reliable.展开更多
Covering rough sets are improvements of traditional rough sets by considering cover of universe instead of partition.In this paper,we develop several measures based on evidence theory to characterize covering rough se...Covering rough sets are improvements of traditional rough sets by considering cover of universe instead of partition.In this paper,we develop several measures based on evidence theory to characterize covering rough sets.First,we present belief and plausibility functions in covering information systems and study their properties.With these measures we characterize lower and upper approximation operators and attribute reductions in covering information systems and decision systems respectively.With these discussions we propose a basic framework of numerical characterizations of covering rough sets.展开更多
基金supported by the National Natural Science Foundation of China (60873069 61171132)+3 种基金the Jiangsu Government Scholarship for Overseas Studies (JS-2010-K005)the Funding of Jiangsu Innovation Program for Graduate Education (CXZZ11 0219)the Open Project Program of Jiangsu Provincial Key Laboratory of Computer Information Processing Technology (KJS1023)the Applying Study Foundation of Nantong (BK2011062)
文摘Particle swarm optimization (PSO) is a new heuristic algorithm which has been applied to many optimization problems successfully. Attribute reduction is a key studying point of the rough set theory, and it has been proven that computing minimal reduc- tion of decision tables is a non-derterministic polynomial (NP)-hard problem. A new cooperative extended attribute reduction algorithm named Co-PSAR based on improved PSO is proposed, in which the cooperative evolutionary strategy with suitable fitness func- tions is involved to learn a good hypothesis for accelerating the optimization of searching minimal attribute reduction. Experiments on Benchmark functions and University of California, Irvine (UCI) data sets, compared with other algorithms, verify the superiority of the Co-PSAR algorithm in terms of the convergence speed, efficiency and accuracy for the attribute reduction.
基金supported by the National Natural Science Foundation of China(6113900261171132)+4 种基金the Funding of Jiangsu Innovation Program for Graduate Education(CXZZ11 0219)the Natural Science Foundation of Jiangsu Education Department(12KJB520013)the Applying Study Foundation of Nantong(BK2011062)the Open Project Program of State Key Laboratory for Novel Software Technology,Nanjing University(KFKT2012B28)the Natural Science Pre-Research Foundation of Nantong University(12ZY016)
文摘Attribute reduction in the rough set theory is an important feature selection method, but finding a minimum attribute reduction has been proven to be a non-deterministic polynomial (NP)-hard problem. Therefore, it is necessary to investigate some fast and effective approximate algorithms. A novel and enhanced quantum-inspired shuffled frog leaping based minimum attribute reduction algorithm (QSFLAR) is proposed. Evolutionary frogs are represented by multi-state quantum bits, and both quantum rotation gate and quantum mutation operators are used to exploit the mechanisms of frog population diversity and convergence to the global optimum. The decomposed attribute subsets are co-evolved by the elitist frogs with a quantum-inspired shuffled frog leaping algorithm. The experimental results validate the better feasibility and effectiveness of QSFLAR, comparing with some representa- tive algorithms. Therefore, QSFLAR can be considered as a more competitive algorithm on the efficiency and accuracy for minimum attribute reduction.
基金supported by the National Natural Science Foundation of China (61070241)the Natural Science Foundation of Shandong Province (ZR2010FM035)Science Research Foundation of University of Jinan (XKY0808)
文摘A new approach to knowledge acquisition in incomplete information system with fuzzy decisions is proposed. In such incomplete information system, the universe of discourse is classified by the maximal tolerance classes, and fuzzy approximations are defined based on them. Three types of relative reducts of maximal tolerance classes are then proposed, and three types of fuzzy decision rules based on the proposed attribute description are defined. The judgment theorems and approximation discernibility functions with respect to them are presented to compute the relative reduct by using Boolean reasoning techniques, from which we can derive optimal fuzzy decision rules from the systems. At last, three types of relative reducts of the system and their computing methods are given.
基金supported by grants from the National Natural Science Foundation of China(No.70861001)the Natural Science Foundation of Hainan Province in China(No.109005).
文摘This paper proposes,from the viewpoint of relation matrix,a new algorithm of attribute reduction for decision systems.Two new and relative reasonable indices are first defined to measure significance of the attributes in decision systems and then a heuristic algorithm of attribute reduction is formulated.Moreover,the time complexity of the algorithm is analyzed and it is proved to be complete.Some numerical experiments are also conducted to access the performance of the presented algorithm and the results demonstrate that it is not only effective but also efficient.
基金The research was supported by the National Natural Science Foundation of China under grant No:60775036, 60970061the Higher Education Nature Science Research Fund Project of Jiangsu Province under grant No: 09KJD520004.
文摘Decision rules mining is an important issue in machine learning and data mining.However,most proposed algorithms mine categorical data at single level,and these rules are not easily understandable and really useful for users.Thus,a new approach to hierarchical decision rules mining is provided in this paper,in which similarity direction measure is introduced to deal with hybrid data.This approach can mine hierarchical decision rules by adjusting similarity measure parameters and the level of concept hierarchy trees.
基金the National Natural Science Foundation of China (50275113).
文摘The basic principles of IF/THEN rules in rough set theory are analyzed first, and then the automatic process of knowledge acquisition is given. The numerical data is qualitatively processed by the classification of membership functions and membership degrees to get the normative decision table. The regular method of relations and the reduction algorithm of attributes are studied. The reduced relations are presented by the multi-representvalue method and its algorithm is offered. The whole knowledge acquisition process has high degree of automation and the extracted knowledge is true and reliable.
基金supported by a grant of NSFC(70871036)a grant of National Basic Research Program of China(2009CB219801-3)
文摘Covering rough sets are improvements of traditional rough sets by considering cover of universe instead of partition.In this paper,we develop several measures based on evidence theory to characterize covering rough sets.First,we present belief and plausibility functions in covering information systems and study their properties.With these measures we characterize lower and upper approximation operators and attribute reductions in covering information systems and decision systems respectively.With these discussions we propose a basic framework of numerical characterizations of covering rough sets.