Background:Cotton fiber maturity is an important property that partially determines the processing and performance of cotton.Due to difficulties of obtaining fiber maturity values accurately from every plant of a gene...Background:Cotton fiber maturity is an important property that partially determines the processing and performance of cotton.Due to difficulties of obtaining fiber maturity values accurately from every plant of a genetic population,cotton geneticists often use micronaire(MIC) and/or lint percentage for classifying immature phenotypes from mature fiber phenotyp es although they are complex fiber traits.The recent development of an algorithm for determining cotton fiber maturity(MIR)from Fourier transform infrared(FT-IR)spectra explores a novel way to measure fiber maturity efficiently and accurately.However,the algorithm has not been tested with a genetic population consisting of a large number of progeny pla,nts.Results:The merits and limits of the MIC-or lint percentage-bas ed phenotyping method were demonstrated by comparing the observed phenotypes with the predicted phenotypes based on their DNA marker genotypes in a genetic population consisting of 708 F2 plants with various fiber maturity.The observed MIC-based fiber phenotypes matched to the predicted phenotypes better than the observed lint percenta ge-based fiber phenotypes.The lint percentage was obtained from each of F2 plants,whereas the MIC values were unable to be obtained from the entire population since certain F2 plants produced insufficient fiber mass for their measurements.To test the feasibiility of cotton fiber infrared maturity(MIR)as a viable phenotyping tool for genetic analyses,we me asured FT-IR spectra from the second population composed of 80 F2 plants with various fiber maturities,determined MIR values using the algorithms,and compared them with their genotypes in addition to other fiber phenotypes.The results showed that MIR values were successfully obtained from each of the F2 plants,and the observed MIR-based phenotypes fit well to the predicted phenotypes based on their DNA marker genotypes as well as the observed phenotypes based on a combination of MIC and lint percentage.Conclusions:The M,R value obtained from FT-IR spectra of cotton fibers is able to accurately assess fiber maturity of all plants of a population in a quantitative way.The technique provides an option for cotton geneticists to determine fiber maturity rapidly and efficiently.展开更多
目的应用衰减全反射傅里叶变换红外(attenuated total reflection-Fourier transform infrared,ATRFTIR)光谱技术分析长白猪死后肋软骨和肋骨组织随死亡时间推移的化学降解过程,为死后较长时间段内推断死亡时间提供可行的新途径和方法...目的应用衰减全反射傅里叶变换红外(attenuated total reflection-Fourier transform infrared,ATRFTIR)光谱技术分析长白猪死后肋软骨和肋骨组织随死亡时间推移的化学降解过程,为死后较长时间段内推断死亡时间提供可行的新途径和方法。方法猪放血处死后取肋软骨和肋骨离体置于20℃环境,后每72 h提取部分组织样本,进行ATR-FTIR光谱分析,并与对应死亡时间点进行相关性分析。结果随死亡时间的延长,肋软骨与肋骨FTIR的主要吸收峰峰位没有发生明显变化,而其部分峰强比出现了不同时序性的变化趋势,并与死亡时间存在良好的相关性,肋软骨较肋骨组织有更好的时序性。结论应用ATRFTIR光谱技术发现死后猪肋软骨和肋骨组织光谱学变化存在一定的规律性,有望成为基于光谱学推断死亡时间的一种新途径。展开更多
基金supported by the USDA-ARS Research Project#6054-21000-017-0ODCotton Incorporated-sponsored project#19-858
文摘Background:Cotton fiber maturity is an important property that partially determines the processing and performance of cotton.Due to difficulties of obtaining fiber maturity values accurately from every plant of a genetic population,cotton geneticists often use micronaire(MIC) and/or lint percentage for classifying immature phenotypes from mature fiber phenotyp es although they are complex fiber traits.The recent development of an algorithm for determining cotton fiber maturity(MIR)from Fourier transform infrared(FT-IR)spectra explores a novel way to measure fiber maturity efficiently and accurately.However,the algorithm has not been tested with a genetic population consisting of a large number of progeny pla,nts.Results:The merits and limits of the MIC-or lint percentage-bas ed phenotyping method were demonstrated by comparing the observed phenotypes with the predicted phenotypes based on their DNA marker genotypes in a genetic population consisting of 708 F2 plants with various fiber maturity.The observed MIC-based fiber phenotypes matched to the predicted phenotypes better than the observed lint percenta ge-based fiber phenotypes.The lint percentage was obtained from each of F2 plants,whereas the MIC values were unable to be obtained from the entire population since certain F2 plants produced insufficient fiber mass for their measurements.To test the feasibiility of cotton fiber infrared maturity(MIR)as a viable phenotyping tool for genetic analyses,we me asured FT-IR spectra from the second population composed of 80 F2 plants with various fiber maturities,determined MIR values using the algorithms,and compared them with their genotypes in addition to other fiber phenotypes.The results showed that MIR values were successfully obtained from each of the F2 plants,and the observed MIR-based phenotypes fit well to the predicted phenotypes based on their DNA marker genotypes as well as the observed phenotypes based on a combination of MIC and lint percentage.Conclusions:The M,R value obtained from FT-IR spectra of cotton fibers is able to accurately assess fiber maturity of all plants of a population in a quantitative way.The technique provides an option for cotton geneticists to determine fiber maturity rapidly and efficiently.