期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
一种融合上下文语义信息与边缘特征的海陆分割方法
1
作者 文甜甜 普运伟 赵文翔 《自然资源遥感》 北大核心 2025年第5期62-72,共11页
由于在环境错综复杂、地物信息丰富的光学遥感图像中进行海陆分割时会出现定位精度低和边缘模糊的问题,因此文章提出一种融合上下文语义信息与边缘特征的深度卷积网络模型与海陆分割方法。首先利用FusionNet语义分割网络模块提取遥感图... 由于在环境错综复杂、地物信息丰富的光学遥感图像中进行海陆分割时会出现定位精度低和边缘模糊的问题,因此文章提出一种融合上下文语义信息与边缘特征的深度卷积网络模型与海陆分割方法。首先利用FusionNet语义分割网络模块提取遥感图像中丰富的目标语义信息;然后利用改进的空洞空间金字塔池化模块(atrous spatial pyramid pooling,ASPP)和上下文注意力模块从分割网络中提取不同尺度和层次的上下文语义特征,并构建边缘提取子网络获取多尺度边缘特征;最后通过融合模块对语义特征和边缘特征进行组合,实现海陆精准分割。在2个典型数据集上的测试结果表明,该文方法的整体预测正确率、F1分数以及边界F1分数分别达到了98.21%,97.64%,89.36%和96.09%,95.67%,86.13%,均显著优于其他对比模型。特别是在复杂背景下,该方法可有效提高分割和边缘检测的准确性,对人工岸线和港口的分割具有明显优势。 展开更多
关键词 海陆分割 边缘提取 语义分割 多任务学习 上下文注意力模块
在线阅读 下载PDF
基于卷积交叉注意力与跨模态动态门控的多模态情感分析模型
2
作者 仲兆满 樊继冬 +3 位作者 张渝 王晨 吕慧慧 张丽玲 《智能系统学报》 北大核心 2025年第4期999-1009,共11页
在多模态情感分析任务中,现有方法由于忽视了图像与文本之间的情感关联性,导致融合特征存在大量冗余特征。为此,提出了一种基于卷积交叉注意力与跨模态动态门控的多模态情感分析模型(convolutional cross-attention and cross-modal dyn... 在多模态情感分析任务中,现有方法由于忽视了图像与文本之间的情感关联性,导致融合特征存在大量冗余特征。为此,提出了一种基于卷积交叉注意力与跨模态动态门控的多模态情感分析模型(convolutional cross-attention and cross-modal dynamic gating,CCA-CDG)。CCA-CDG通过引入卷积交叉注意力模块(convolutional cross-attention module,CCAM)来捕捉图像与文本间的一致性表达,获取图文之间的对齐特征;同时利用跨模态动态门控模块(cross-modal dynamic gating module,CDGM),根据图文之间的情感关联性动态调节情感特征的融合。此外,考虑到图文上下文信息对于理解情感的重要性,还设计了一个全局特征联合模块,将图文交互特征与全局特征权重融合,实现更可靠的情感预测。在MVSA-Single和MVSA-Multi数据集上进行实验验证,所提出的CCA-CDG能够有效改善多模态情感分析的效果。 展开更多
关键词 多模态融合 情感分析 情感关联性 注意力机制 卷积交叉注意力 跨模态动态门控 全局特征联合 权重融合
在线阅读 下载PDF
基于多头注意力机制的飞机发动机寿命预测研究 被引量:12
3
作者 聂磊 徐诗奕 +3 位作者 张吕凡 尹业寒 董正琼 周向东 《推进技术》 EI CAS CSCD 北大核心 2023年第8期192-200,共9页
针对飞机发动机监测参数多和预测模型不能充分提取监测数据的有效信息等问题,基于一维卷积神经网络(1DCNN)、时序卷积神经网络(TCN)和多头注意力机制,提出一种新的网络结构以实现飞机发动机剩余寿命的准确预测。对多维特征参数分别建立... 针对飞机发动机监测参数多和预测模型不能充分提取监测数据的有效信息等问题,基于一维卷积神经网络(1DCNN)、时序卷积神经网络(TCN)和多头注意力机制,提出一种新的网络结构以实现飞机发动机剩余寿命的准确预测。对多维特征参数分别建立一个1DCNN-TCN模型,利用两层1DCNN对飞机发动机的多元传感器信号进行特征提取,利用TCN对特征量的时序信息进行记忆,通过多头注意力机制对多个1DCNN-TCN的输出分别进行加权处理,并拼接最终结果。分析结果表明,采用本文方法得到的RMSE和Score值比目前文献中最优值分别降低了6.84%,63.41%。该方法显著提升了飞机发动机剩余寿命预测的准确性。 展开更多
关键词 飞机发动机 卷积神经网络 时序卷积神经网络 多头注意力机制 剩余寿命
在线阅读 下载PDF
Attention mechanism based multi-scale feature extraction of bearing fault diagnosis 被引量:4
4
作者 LEI Xue LU Ningyun +2 位作者 CHEN Chuang HU Tianzhen JIANG Bin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第5期1359-1367,共9页
Effective bearing fault diagnosis is vital for the safe and reliable operation of rotating machinery.In practical applications,bearings often work at various rotational speeds as well as load conditions.Yet,the bearin... Effective bearing fault diagnosis is vital for the safe and reliable operation of rotating machinery.In practical applications,bearings often work at various rotational speeds as well as load conditions.Yet,the bearing fault diagnosis under multiple conditions is a new subject,which needs to be further explored.Therefore,a multi-scale deep belief network(DBN)method integrated with attention mechanism is proposed for the purpose of extracting the multi-scale core features from vibration signals,containing four primary steps:preprocessing of multi-scale data,feature extraction,feature fusion,and fault classification.The key novelties include multi-scale feature extraction using multi-scale DBN algorithm,and feature fusion using attention mecha-nism.The benchmark dataset from University of Ottawa is applied to validate the effectiveness as well as advantages of this method.Furthermore,the aforementioned method is compared with four classical fault diagnosis methods reported in the literature,and the comparison results show that our pro-posed method has higher diagnostic accuracy and better robustness. 展开更多
关键词 bearing fault diagnosis multiple conditions atten-tion mechanism multi-scale data deep belief network(DBN)
在线阅读 下载PDF
基于特征相似性和特征规范化的注意力模块 被引量:1
5
作者 杜启亮 汪益民 田联房 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第7期62-71,共10页
近年来,注意力机制在图像分类、目标检测和语义分割等领域取得了巨大成功,但现有的注意力机制大多只能在通道或空间维度上实现特征融合,这极大限制了其在通道和空间维度上变化的灵活性,导致无法充分利用特征信息。为此,文中提出一种基... 近年来,注意力机制在图像分类、目标检测和语义分割等领域取得了巨大成功,但现有的注意力机制大多只能在通道或空间维度上实现特征融合,这极大限制了其在通道和空间维度上变化的灵活性,导致无法充分利用特征信息。为此,文中提出一种基于特征相似性和特征规范化的、可同时利用特征图各维度信息的卷积神经网络注意力模块FSNAM。该模块由特征相似性模块(FSM)和特征规范化模块(FNM)两部分组成,FSM利用输入特征图的通道特征信息和局部空间特征信息生成一个二维的特征相似性权重图;FNM利用输入特征图的全局空间特征信息生成一个三维的特征规范化权重图;两个模块生成的权重图融合在一起,生成一个三维的注意力权重图,以此实现通道特征信息和空间特征信息的融合。为证明FSNAM的可行性和有效性,进行了消融实验,结果表明:在图像分类任务方面,FSNAM模块对分类网络在CIFAR数据集上的性能提升明显优于其他主流注意力模块;在目标检测任务方面,使用FSNAM模块的目标检测网络对VOC数据集中的小目标和中等大小目标的检测准确率分别提高了3.9和1.2个百分点;在语义分割任务方面,使用FSNAM模块可以提高HRNet模型的性能,在SBD数据集上模型的平均像素准确率提高了0.58个百分点。 展开更多
关键词 卷积神经网络 计算机视觉 特征相似性 特征规范化 注意力模块
在线阅读 下载PDF
基于注意力时间卷积网络的加密流量分类 被引量:2
6
作者 金彦亮 陈彦韬 +1 位作者 高塬 周嘉豪 《应用科学学报》 CAS CSCD 北大核心 2024年第4期659-672,共14页
针对目前大多数加密流量分类方法忽略了流量的时序特性和所用模型的效率等问题,提出了一种基于注意力时间卷积网络(attention temporal convolutional network,ATCN)的高效分类方法。该方法首先将流量的内容信息与时序信息共同嵌入模型... 针对目前大多数加密流量分类方法忽略了流量的时序特性和所用模型的效率等问题,提出了一种基于注意力时间卷积网络(attention temporal convolutional network,ATCN)的高效分类方法。该方法首先将流量的内容信息与时序信息共同嵌入模型,增强加密流量的表征;然后利用时间卷积网络并行捕获有效特征以增加训练速度;最后引入注意力机制建立动态特征汇聚,实现模型参数的优化。实验结果表明,该方法在设定的两项分类任务上的性能都优于基准模型,其准确率分别为99.4%和99.8%,且模型参数量最多可降低至基准模型的15%,充分证明了本文方法的先进性。最后,本文在ATCN上引入了一种基于迁移学习的微调方式,为流量分类中零日流量的处理提供了一种新颖的思路。 展开更多
关键词 加密流量分类 时间卷积网络 注意力机制 迁移学习
在线阅读 下载PDF
基于压缩激励残差分组扩张卷积和密集线性门控Unet歌声分离方法 被引量:1
7
作者 张天骐 熊天 +1 位作者 吴超 闻斌 《应用科学学报》 CAS CSCD 北大核心 2023年第5期815-830,共16页
针对Unet频域歌声分离网络模型对语音时序信息的捕获困难以及底层特征利用率不高的问题,设计了一种相比于基线Unet网络参数量更小且歌声分离效果更好的卷积神经网络。首先设计了一种残差分组扩张卷积结合压缩激励模块,并将其引入到编码... 针对Unet频域歌声分离网络模型对语音时序信息的捕获困难以及底层特征利用率不高的问题,设计了一种相比于基线Unet网络参数量更小且歌声分离效果更好的卷积神经网络。首先设计了一种残差分组扩张卷积结合压缩激励模块,并将其引入到编码和解码阶段,该模块在参数量减少和增大网络感受野的同时自适应学习不同通道的重要特征,不但增强了有用特征,而且还抑制了无用特征。其次在传输层将线性门控单元采用密集相加连接来增强网络在特征传递过程中对时序特征的获取,并且使用扩张卷积来代替普通卷积以扩大网络的感受野。最后使用注意力门控机制来代替基线Unet中的跳跃连接以加强网络对底层特征的利用。在Ccmixter和MUSDB18数据集中进行实验,与基线网络相比,歌声分离的性能指标都有提升,并且其参数量大约只有基线网络的1/5。 展开更多
关键词 歌声分离 分组扩张卷积 门控线性单元 注意力门控
在线阅读 下载PDF
类内-类间通道注意力少样本分类
8
作者 杨利平 张天洋 +1 位作者 王宇阳 辜小花 《光学精密工程》 EI CAS CSCD 北大核心 2023年第21期3145-3155,共11页
针对元学习少样本分类样本特征鉴别能力不足的问题,提出了一种类内-类间通道注意力少样本分类方法(Intrainter Channel Attention Few-shot Classification,ICAFSC)。ICAFSC在原型网络基础上设计了一个类内-类间通道注意力模块,该模块... 针对元学习少样本分类样本特征鉴别能力不足的问题,提出了一种类内-类间通道注意力少样本分类方法(Intrainter Channel Attention Few-shot Classification,ICAFSC)。ICAFSC在原型网络基础上设计了一个类内-类间通道注意力模块,该模块通过类内-类间距离度量计算通道权重实现特征加权,提高特征对类别的鉴别能力。为了克服直接在元训练阶段学习类内-类间通道注意力模块容易出现过拟合或欠拟合现象的问题,ICAFSC在原型网络的元训练之前增加一个预训练阶段。该阶段设计具有大量标记样本的分类任务,并利用这些任务充分训练类内-类间通道注意力模块,促使该模块达到较优的状态。在原型网络的元训练和元测试阶段,ICAFSC冻结类内-类间通道注意力模块的参数,分别实现少样本分类经验的学习与迁移。在MiniImagenet数据集上分别开展了1-shot和5-shot的少样本分类实验。实验结果表明:本文提出的类内-类间通道注意力少样本分类方法与原型网络相比,在1-shot和5-shot条件下分类准确率分别提高了1.93%和1.15%。 展开更多
关键词 深度学习 少样本分类 元学习 原型网络 通道注意力
在线阅读 下载PDF
基于多维语义特征与层次注意力机制的讽刺识别 被引量:2
9
作者 宋留静 赵泽方 +2 位作者 马宇翔 申罕骥 李俊 《高技术通讯》 CAS 北大核心 2024年第5期453-462,共10页
讽刺是一种复杂的语言表达方式,在日常交流中发挥着重要作用。随着人工智能和社交网络的快速发展,讽刺识别已成为自然语言处理领域的热点研究课题之一。现有的讽刺识别研究往往从单一维度对讽刺文本特征进行表示,忽视了讽刺文本特征的... 讽刺是一种复杂的语言表达方式,在日常交流中发挥着重要作用。随着人工智能和社交网络的快速发展,讽刺识别已成为自然语言处理领域的热点研究课题之一。现有的讽刺识别研究往往从单一维度对讽刺文本特征进行表示,忽视了讽刺文本特征的细微差异及其重要程度。本文将讽刺识别视为文本分类任务,在特征提取阶段,将讽刺文本根据其不一致性特征、情感特征、句法结构特征和风格特征进行多维语义特征表示。在特征融合阶段,针对不同维度特征对整体特征贡献和关联程度不同,采用层次注意力机制调整不同讽刺语言学特征对模型整体性能的影响。实验结果表明,所提出的模型能够从多个维度提取讽刺文本的潜在语义特征,其在公开数据集IAC、Tweets和Reddit上的实验性能均有明显提升。 展开更多
关键词 讽刺识别 自然语言处理 多维语义表示 层次注意力机制
在线阅读 下载PDF
强化特征图的无参考低光照图像增强 被引量:1
10
作者 袁姮 王笑雪 张晟翀 《计算机科学与探索》 CSCD 北大核心 2024年第9期2449-2465,共17页
针对低光照图像质量不佳、夹杂噪声导致对比度和亮度不足、细节不清晰,且成对的低光照图像数据集获取成本过高的问题,在生物视觉马赫带效应的启发下,提出一种强化特征图的无参考低光照图像增强方法。使用强化滤波块(EFB)对图像和特征图... 针对低光照图像质量不佳、夹杂噪声导致对比度和亮度不足、细节不清晰,且成对的低光照图像数据集获取成本过高的问题,在生物视觉马赫带效应的启发下,提出一种强化特征图的无参考低光照图像增强方法。使用强化滤波块(EFB)对图像和特征图进行特征强化,抑制噪声的同时强化特征细节,提高网络对特征的学习能力。将跳跃连接与空间注意力模块(ESA)结合,通过融合强化的浅层特征与深层特征来提取全局上下文信息和局部区域特征,有效保留了图像的色彩信息,避免细节丢失,提高网络的泛化能力。使用像素估计曲线调整低光照图像像素的动态范围,对其进行亮度增强。实验结果表明,经该算法处理后的图像在PSNR、SSIM、LPIPS和NIQE等指标上分别达到了17.709 dB、0.657、0.239和3.486,该方法相较于现有的主流算法能够更好地达到图像增强目的,有效地提升图像亮度和细节信息,同时保持图像的自然属性。 展开更多
关键词 图像增强 生物视觉机制 强化特征图 无参考方法 注意力机制 图像处理
在线阅读 下载PDF
“震慑”还是“依靠”:地理距离对企业环境信息披露质量的影响 被引量:7
11
作者 王钰 王建新 《中国人口·资源与环境》 CSSCI CSCD 北大核心 2024年第4期91-102,共12页
“双碳”背景下,企业环境信息强制披露拉开序幕。根据地理经济学理论,企业与生态环境监管部门之间地理距离越近,可能对企业形成“震慑”(监督成本的“距离衰减效应”),也可能让企业有所“依靠”(寻租成本的“距离衰减效应”)。基于2015... “双碳”背景下,企业环境信息强制披露拉开序幕。根据地理经济学理论,企业与生态环境监管部门之间地理距离越近,可能对企业形成“震慑”(监督成本的“距离衰减效应”),也可能让企业有所“依靠”(寻租成本的“距离衰减效应”)。基于2015—2020年重点排污上市公司数据,该研究采用固定效应模型和中介效应模型实证检验了企业与生态环境监管部门之间的地理距离对企业环境信息披露质量的影响方向及影响路径。研究表明:①企业与生态环境监管部门之间的地理距离越近,企业的环境信息披露质量越高,支持了监督成本的“距离衰减效应”假说。②地理距离对企业环境信息披露质量的影响是通过省级层面监察监测力度和地市级层面执法力度实现的。③地方人民政府环境治理力度的增强、地区数字化水平的提升和媒体关注的提高均可以抑制监督成本的“距离衰减效应”。为了企业环境信息披露质量的全区域均衡发展,应增强地方人民政府环境治理力度、提升地区数字化水平和提高媒体关注。该研究从地理经济学的视角,拓展了企业环境信息披露质量的影响因素,丰富了地理经济学“距离衰减效应”的理论实践,为促进企业环境信息披露质量的均衡发展提供了解决方案和理论依据。 展开更多
关键词 环境信息披露 地理距离 环境治理 数字化水平 媒体关注
在线阅读 下载PDF
基于频谱残差视觉显著计算的高分辨SAR图像舰船检测算法 被引量:12
12
作者 熊伟 徐永力 +2 位作者 姚力波 崔亚奇 李岳峰 《电光与控制》 北大核心 2018年第4期7-11,49,共6页
分析了高分辨率SAR图像中海洋背景和舰船目标的特点,针对高分辨率SAR图像提出了一种两阶段舰船目标快速检测算法:第一阶段采用改进的频谱残差视觉显著计算模型快速获取视觉的感兴趣区域;第二阶段检测阶段,结合贝叶斯理论二元假设检验的... 分析了高分辨率SAR图像中海洋背景和舰船目标的特点,针对高分辨率SAR图像提出了一种两阶段舰船目标快速检测算法:第一阶段采用改进的频谱残差视觉显著计算模型快速获取视觉的感兴趣区域;第二阶段检测阶段,结合贝叶斯理论二元假设检验的思想,设计了一个局部最大后验概率分类器进行像素分类,经参数估计、判决准则完成显著区域内像素二分类以实现目标检测。实验采用典型的高分辨率SAR卫星Terra-SAR-X卫星数据进行仿真实验,结果表明所提算法具有良好的检测性能,也更加符合实际高分辨率图像舰船目标检测的应用需求。通过进一步实验与以往检测算法的对比得出结论,高分辨率SAR图像舰船目标检测方法在能够改善由斑点噪声和不均匀的海杂波背景对检测结果带来虚警的同时,检测速度也提高了25%~50%。 展开更多
关键词 合成孔径雷达图像 舰船目标检测 频谱残差模型 视觉注意机制 局部最大后验概率分类器
在线阅读 下载PDF
基于改进长短期记忆网络的新能源场站网络安全评估方法研究 被引量:2
13
作者 刘珊 李瑞 王尧 《电信科学》 北大核心 2024年第10期124-133,共10页
为了解决新能源大规模并网造成现有新能源场站网络安全防护体系无法满足网络异常监测和告警需求的问题,提出一种基于改进长短期记忆网络的新能源场站网络安全评估方法。首先,根据新能源场站网络系统架构,分析网络安全发生原因;其次,基... 为了解决新能源大规模并网造成现有新能源场站网络安全防护体系无法满足网络异常监测和告警需求的问题,提出一种基于改进长短期记忆网络的新能源场站网络安全评估方法。首先,根据新能源场站网络系统架构,分析网络安全发生原因;其次,基于随机森林算法求解新能源场站网络流量的基尼系数,进而求出网络流量所有特征的重要系数,选出重要特征;最后,将重要特征输入长短期记忆网络中,利用注意力机制自适应分配数据的时间和特征,加强对网络流量中重要时间和特征的重视,进而提高模型对网络安全评估的准确性。试验结果表明,该方法能够准确评估新能源场站网络安全状态,与支持向量机、卷积神经网络、传统长短期记忆网络相比,评估准确率分别提升了12.65%、9.34%、8.79%,提升了新能源电力系统的网络安全状态感知、评价和告警能力。 展开更多
关键词 新能源场站 网络安全 长短期记忆网络 随机森林算法 注意力机制
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部