期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
BDMFuse:Multi-scale network fusion for infrared and visible images based on base and detail features
1
作者 SI Hai-Ping ZHAO Wen-Rui +4 位作者 LI Ting-Ting LI Fei-Tao Fernando Bacao SUN Chang-Xia LI Yan-Ling 《红外与毫米波学报》 北大核心 2025年第2期289-298,共10页
The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method f... The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method for infrared and visible image fusion is proposed.The encoder designed according to the optimization objective consists of a base encoder and a detail encoder,which is used to extract low-frequency and high-frequency information from the image.This extraction may lead to some information not being captured,so a compensation encoder is proposed to supplement the missing information.Multi-scale decomposition is also employed to extract image features more comprehensively.The decoder combines low-frequency,high-frequency and supplementary information to obtain multi-scale features.Subsequently,the attention strategy and fusion module are introduced to perform multi-scale fusion for image reconstruction.Experimental results on three datasets show that the fused images generated by this network effectively retain salient targets while being more consistent with human visual perception. 展开更多
关键词 infrared image visible image image fusion encoder-decoder multi-scale features
在线阅读 下载PDF
Ship recognition based on HRRP via multi-scale sparse preserving method
2
作者 YANG Xueling ZHANG Gong SONG Hu 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第3期599-608,共10页
In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) ba... In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) based on the maximum margin criterion(MMC) is proposed for recognizing the class of ship targets utilizing the high-resolution range profile(HRRP). Multi-scale fusion is introduced to capture the local and detailed information in small-scale features, and the global and contour information in large-scale features, offering help to extract the edge information from sea clutter and further improving the target recognition accuracy. The proposed method can maximally preserve the multi-scale fusion sparse of data and maximize the class separability in the reduced dimensionality by reproducing kernel Hilbert space. Experimental results on the measured radar data show that the proposed method can effectively extract the features of ship target from sea clutter, further reduce the feature dimensionality, and improve target recognition performance. 展开更多
关键词 ship target recognition high-resolution range profile(HRRP) multi-scale fusion kernel sparse preserving projection(MSFKSPP) feature extraction dimensionality reduction
在线阅读 下载PDF
Bidirectional parallel multi-branch convolution feature pyramid network for target detection in aerial images of swarm UAVs 被引量:4
3
作者 Lei Fu Wen-bin Gu +3 位作者 Wei Li Liang Chen Yong-bao Ai Hua-lei Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第4期1531-1541,共11页
In this paper,based on a bidirectional parallel multi-branch feature pyramid network(BPMFPN),a novel one-stage object detector called BPMFPN Det is proposed for real-time detection of ground multi-scale targets by swa... In this paper,based on a bidirectional parallel multi-branch feature pyramid network(BPMFPN),a novel one-stage object detector called BPMFPN Det is proposed for real-time detection of ground multi-scale targets by swarm unmanned aerial vehicles(UAVs).First,the bidirectional parallel multi-branch convolution modules are used to construct the feature pyramid to enhance the feature expression abilities of different scale feature layers.Next,the feature pyramid is integrated into the single-stage object detection framework to ensure real-time performance.In order to validate the effectiveness of the proposed algorithm,experiments are conducted on four datasets.For the PASCAL VOC dataset,the proposed algorithm achieves the mean average precision(mAP)of 85.4 on the VOC 2007 test set.With regard to the detection in optical remote sensing(DIOR)dataset,the proposed algorithm achieves 73.9 mAP.For vehicle detection in aerial imagery(VEDAI)dataset,the detection accuracy of small land vehicle(slv)targets reaches 97.4 mAP.For unmanned aerial vehicle detection and tracking(UAVDT)dataset,the proposed BPMFPN Det achieves the mAP of 48.75.Compared with the previous state-of-the-art methods,the results obtained by the proposed algorithm are more competitive.The experimental results demonstrate that the proposed algorithm can effectively solve the problem of real-time detection of ground multi-scale targets in aerial images of swarm UAVs. 展开更多
关键词 Aerial images Object detection feature pyramid networks multi-scale feature fusion Swarm UAVs
在线阅读 下载PDF
基于粗到细的多尺度单幅图像去雾方法
4
作者 王德文 陈威 苏攀 《智能系统学报》 CSCD 北大核心 2024年第5期1102-1110,共9页
为了解决现有图像去雾算法易出现细节纹理丢失、颜色失真或对非均匀浓雾处理不彻底的问题,提出一种基于粗到细的多尺度单幅图像去雾方法。首先,主干网络使用残差特征注意力模块对有雾图像进行特征提取;其次,将不同尺度的输入图像进行卷... 为了解决现有图像去雾算法易出现细节纹理丢失、颜色失真或对非均匀浓雾处理不彻底的问题,提出一种基于粗到细的多尺度单幅图像去雾方法。首先,主干网络使用残差特征注意力模块对有雾图像进行特征提取;其次,将不同尺度的输入图像进行卷积预处理,通过多尺度特征融合模块将预处理的浅层特征与主干网络融合;再次,将不同粒度的非对称特征进行有效融合;最后,将浅层信息与深层信息自适应混合输出,通过对比正则损失构建正负样本信息,使得去雾图像更接近无雾图像。实验结果表明,与已有代表性的去雾方法相比,提出的方法能对合成数据集与真实数据集进行有效去雾,在细节保留与色彩还原上优于对比方法。 展开更多
关键词 图像去雾 粗到细 多尺度特征融合 残差特征注意力 非对称特征融合 自适应混合 对比正则 正负样本
在线阅读 下载PDF
非对称的分层特征融合的RGBT跟踪网络
5
作者 吴习惠 李婷 葛洪伟 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2024年第11期1700-1709,共10页
为了解决可见光图像和热红外图像由于成像原理不同而导致的模态存在异质性的问题,提出一种非对称的分层特征融合的RGBT跟踪网络.首先通过双流网络分别提取可见光和热红外的特征;然后通过模态特征提取模块挖掘不同模态特征,并对获得的特... 为了解决可见光图像和热红外图像由于成像原理不同而导致的模态存在异质性的问题,提出一种非对称的分层特征融合的RGBT跟踪网络.首先通过双流网络分别提取可见光和热红外的特征;然后通过模态特征提取模块挖掘不同模态特征,并对获得的特征进行自适应聚合,以获得有利于增强可见光模态的特征;最后将各层获得的聚合特征与双流网络获得的可见光特征进行增强融合,获得更具有鲁棒性的特征.在GTOT, RGBT234和LasHeR数据集上的实验结果表明,所提网络的跟踪精度(PR)和成功率(SR)分别达到92.2%/77.2%,82.9%/61.1%和52.7%/40.3%,与目前主流的RGBT目标跟踪网络相比, PR和SR均有所提高,验证了该网络的有效性. 展开更多
关键词 非对称结构 分层特征融合 RGBT目标跟踪 TRANSFORMER
在线阅读 下载PDF
基于非对称增强注意力与特征交叉融合的行人重识别方法 被引量:1
6
作者 金梅 李媛媛 +2 位作者 郝兴军 杨曼 张立国 《计量学报》 CSCD 北大核心 2022年第12期1573-1580,共8页
针对现有的行人重识别方法提取到的特征信息充分性与辨识性不足导致检索精度低的问题,提出一种基于非对称增强注意力与特征交叉融合的行人重识别方法。首先,构建非对称增强注意力模块,通过多重池化聚合的跨邻域通道交互注意力增强显著... 针对现有的行人重识别方法提取到的特征信息充分性与辨识性不足导致检索精度低的问题,提出一种基于非对称增强注意力与特征交叉融合的行人重识别方法。首先,构建非对称增强注意力模块,通过多重池化聚合的跨邻域通道交互注意力增强显著特征表示,使网络聚焦于图像中的行人区域;其次,考虑到网络各层特征间的差异性与关联性,构建特征交叉融合模块,利用交叉融合方式实现同层不同级特征的跨层级融合,进而实现多尺度融合;最后,水平切分输出特征以获取局部特征,从而实现在特定区域上描述行人。在Market1501、DukeMTMC-reID与CUHK03这3个公开数据集上对提出的方法进行了验证,首位命中率(Rank-1)分别达到了93.5%、85.1%和64.3%,证明了该方法在提升行人重识别性能上具有优越性。 展开更多
关键词 计量学 行人重识别 非对称增强注意力 特征交叉融合 深度学习 首位命中率
在线阅读 下载PDF
融合低层和高层特征图表示的图像显著性检测算法 被引量:4
7
作者 高思晗 张雷 +1 位作者 李成龙 汤进 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2016年第3期420-426,共7页
为了有效地利用不同层次特征的互补性,提高鲁棒性,提出一种融合低层和高层特征的图表示的图像显著性算法.首先以超像素为结点构图,通过高层特征和底层特征差异定义该图的点和边的权重;然后根据该图模型构造不对称转移概率矩阵,并利用Mar... 为了有效地利用不同层次特征的互补性,提高鲁棒性,提出一种融合低层和高层特征的图表示的图像显著性算法.首先以超像素为结点构图,通过高层特征和底层特征差异定义该图的点和边的权重;然后根据该图模型构造不对称转移概率矩阵,并利用Markov随机游走算法进行求解,得到初始显著性图;最后结合中心先验及改进的边界先验得到最终的图像显著性结果.在4个公共数据集上与10种方法进行比较与分析,验证了该算法的有效性. 展开更多
关键词 图像显著性 特征融合 图表示模型 不对称转移
在线阅读 下载PDF
面向遥感图像的多阶段特征融合目标检测方法 被引量:4
8
作者 陈立 张帆 +1 位作者 郭威 黄赟 《电子学报》 EI CAS CSCD 北大核心 2023年第12期3520-3528,共9页
遥感图像目标具有多尺度、大横纵比、多角度等特性,给传统的目标检测方法带来了新的挑战.针对现有方法应用于目标尺度小、横纵比例不均衡的遥感图像时存在的精度下降问题,提出一种基于多阶段特征融合的目标检测方法MF2M(Multi-stage Fea... 遥感图像目标具有多尺度、大横纵比、多角度等特性,给传统的目标检测方法带来了新的挑战.针对现有方法应用于目标尺度小、横纵比例不均衡的遥感图像时存在的精度下降问题,提出一种基于多阶段特征融合的目标检测方法MF2M(Multi-stage Feature Fusion Method).该方法在一阶段对特征图通道进行组合拆分,再采用卷积拼接的融合方式聚合通道维度的特征,从而强化输出的目标空间轮廓信息;二阶段设计多比例的非对称卷积块,增强大横纵比目标的高维全局特征,改善目标与检测框匹配粗糙的问题,同时利用串并行相结合的处理方式减少冗余卷积参数,加速网络收敛.在DOTA(Dataset for Object deTection in Aerial images)数据集上的实验结果表明,基准方法引入MF2M后,在保证检测速度的前提下精度指标mAP提高至76.44%,结果验证了所提算法的有效性与可靠性. 展开更多
关键词 遥感图像 目标检测 多阶段特征融合 通道拼接 非对称卷积
在线阅读 下载PDF
基于改进ShuffleNet v1的服装图像分类算法 被引量:11
9
作者 曾华福 杨杰 李林红 《现代纺织技术》 北大核心 2023年第2期23-35,共13页
针对服装图像分类模型体积较大,缺少细分类的问题,提出基于改进ShuffleNet v1的服装图像分类算法。该算法以ShuffleNet v1为基础,通过优化模块的堆叠次数和网络层通道数来降低模型的计算量,满足算法的实时性要求;嵌入通道和空间注意力模... 针对服装图像分类模型体积较大,缺少细分类的问题,提出基于改进ShuffleNet v1的服装图像分类算法。该算法以ShuffleNet v1为基础,通过优化模块的堆叠次数和网络层通道数来降低模型的计算量,满足算法的实时性要求;嵌入通道和空间注意力模块,使得模型关注重要的特征信息,抑制无用的特征信息;设计非对称多尺度特征融合模块,加强模型的特征提取能力。结果表明:所提算法在自建的衬衫服装数据集中准确率为88.31%,分别高于ShuffleNet v1、ShuffleNet v2、MobileNet v2和ResNet50模型2.77%、3.69%、1.98%、0.62%;所提算法在DeepFashion的部分数据集中也取得了不错的效果,验证了所提算法的有效性与通用性;与基础模型相比,所提模型的参数量仅为0.73M,模型参数量减少了约60%,实现了模型准确率和推理速度的提升。 展开更多
关键词 服装图像分类 ShuffleNet v1 深度学习 注意力机制 非对称多尺度特征融合
在线阅读 下载PDF
基于小波域和时域的视频质量评价 被引量:1
10
作者 戴慧慧 桑庆兵 《计算机工程》 CAS CSCD 北大核心 2015年第5期280-284,289,共6页
目前多数视频质量评价算法将视频所有帧的图像质量平均值作为整个视频的质量,但该方式只考虑空间图像质量,忽略视频固有时域上的特性,因而无法准确地描述客观视频质量评价和主观评价的相关性。为此,结合视频的时域特性,提出一种改进的... 目前多数视频质量评价算法将视频所有帧的图像质量平均值作为整个视频的质量,但该方式只考虑空间图像质量,忽略视频固有时域上的特性,因而无法准确地描述客观视频质量评价和主观评价的相关性。为此,结合视频的时域特性,提出一种改进的视频质量评价算法。该算法将视频帧图像分为边缘区域与平滑区域,分别对2个区域进行小波变换,并利用小波系数求得各个区域视频帧的图像质量度量值,进行加权后得出视频单帧图像质量的度量值,对连续单帧图像进行时域融合,从而求得整个视频的质量度量值。在LIVE视频数据库上的实验结果表明,该算法与人类主观评价结果具有较好的一致性,斯皮尔曼相关系数达到0.788 5。 展开更多
关键词 视频质量评价 小波域 特征向量 区域划分 时域融合 非对称观测 感知加权
在线阅读 下载PDF
基于注意力机制和不对称卷积的目标跟踪算法 被引量:1
11
作者 李锦瑞 张轶 《计算机工程与设计》 北大核心 2023年第10期3110-3116,共7页
一般孪生网络跟踪算法中目标模板不会更新,模板分支与搜索分支在计算时相互独立,无法进行鲁棒跟踪,使用深度互相关来融合两分支的特征有着容易被干扰物欺骗、激活通道数少、对目标边界的分辨能力较弱,且不能充分受益于大规模的离线训练... 一般孪生网络跟踪算法中目标模板不会更新,模板分支与搜索分支在计算时相互独立,无法进行鲁棒跟踪,使用深度互相关来融合两分支的特征有着容易被干扰物欺骗、激活通道数少、对目标边界的分辨能力较弱,且不能充分受益于大规模的离线训练,为此提出一种基于注意力机制和不对称卷积的目标跟踪算法。设计增强注意力网络增强和传递分支信息。采用不对称卷积来代替深度互相关,使用有效的参数学习如何更好地互相关。所提算法在OTB100、LaSOT、VOT2019上做了对比实验,实验结果表明,所提算法表现较好,性能优于现有的多个先进跟踪器。 展开更多
关键词 深度学习 目标跟踪 孪生网络 特征融合 注意力机制 互相关 不对称卷积
在线阅读 下载PDF
非对称方向性局部二值模式人脸表情识别 被引量:3
12
作者 黄丽雯 杨欢欢 王勃 《计算机工程与应用》 CSCD 北大核心 2018年第23期183-188,共6页
针对方向性局部二值模式(DLBP)在单尺度下获取图像纹理特征的不足,提出一种非对称方向性局部二值模式(AR-DLBP)多尺度多方向融合的表情识别算法。首先对人脸表情图像进行光照补偿预处理,消除光照、噪声的影响,分割出人脸及眉、眼、嘴局... 针对方向性局部二值模式(DLBP)在单尺度下获取图像纹理特征的不足,提出一种非对称方向性局部二值模式(AR-DLBP)多尺度多方向融合的表情识别算法。首先对人脸表情图像进行光照补偿预处理,消除光照、噪声的影响,分割出人脸及眉、眼、嘴局部表情关键区域,并计算出关键区域的贡献度(CM);然后提取人脸及关键区域的异或-非对称方向性局部二值模式(XOR-AR-DLBP)直方图特征信息,并根据CM对关键区域直方图信息进行加权级联再与整幅人脸图像的特征信息进行融合;最后用SVM分类器进行表情分类识别。该算法在JAFFE库、CK库上仿真实验,分别取得95.71%、97.99%的平均识别率及112 ms、135 ms的平均识别时间,实验结果表明,该算法可以有效精确地完成人脸表情的分类识别。通过对表情图像光照补偿预处理及分割出表情的关键区域,并加权融合局部与整体特征,大大提高了特征的鉴别能力,与传统算法的对比实验,也表明该算法无论是在识别率还是在识别时间上,所得效果都是最好的。 展开更多
关键词 表情识别 非对称方向性局部二值模式 多特征融合 支持向量机(SVM)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部