期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
基于ABSA与动态少样本提示的主观知识对话回复生成模型 被引量:1
1
作者 饶东宁 庄杰涛 《计算机应用研究》 北大核心 2025年第6期1706-1712,共7页
在最新的任务导向型对话系统挑战中,有效利用主观知识(如个人见解)对于满足用户的特定需求至关重要。然而,由于此类知识具有个体主观性的特征,如何有效地整合和利用这些信息成为了研究的关键焦点。提出一种名为DynSense的方法,旨在解决... 在最新的任务导向型对话系统挑战中,有效利用主观知识(如个人见解)对于满足用户的特定需求至关重要。然而,由于此类知识具有个体主观性的特征,如何有效地整合和利用这些信息成为了研究的关键焦点。提出一种名为DynSense的方法,旨在解决从多条相关用户主观意见中生成全面且概括性回复的挑战。DynSense首先运用基于方面的情感分析(ABSA)技术来解析主观知识片段中的方面及其情感极性,并实现用户询问与知识片段的对齐。接着,利用先进对话模型结合对话上下文及经ABSA增强的信息生成回应。特别设计的DynMatch算法通过动态选择与当前查询最相似的高质量知识片段作为少样本提示(few-shot prompts),以引导模型生成更贴切的回复。实验结果表明,DynSense展现出对潜在语义特征和情感倾向的卓越捕捉能力,实现了精准、全面且高度贴合过往用户评价的回复。与现有模型相比,DynSense在SKTOD基准上的各项评估指标均有显著提升。 展开更多
关键词 任务导向型对话系统 主观知识 基于方面项的情感分析 动态少样本提示
在线阅读 下载PDF
基于混合注意力和类型感知的方面级情感分析
2
作者 王红霞 张佳慧 聂振凯 《高技术通讯》 北大核心 2025年第3期262-272,共11页
为解决方面级情感分析(aspect-based sentiment analysis,ABSA)任务中,未充分利用依赖树中的句法信息及语义信息提取不充分等问题,提出了基于混合注意力和类型感知的双图卷积网络模型。首先,设计了混合注意力模块,用于更全面地提取句子... 为解决方面级情感分析(aspect-based sentiment analysis,ABSA)任务中,未充分利用依赖树中的句法信息及语义信息提取不充分等问题,提出了基于混合注意力和类型感知的双图卷积网络模型。首先,设计了混合注意力模块,用于更全面地提取句子的语义信息,该模块采用方面感知注意力机制,学习与方面项相关的局部语义特征,再结合自注意力机制学习句子的全局语义特征。其次,为了更充分地利用依赖树中的句法信息,设计了利用依赖关系类型构建类型感知图模块,并采用注意力机制区分不同依赖类型的重要程度,重构带有权重的类型感知图。最后,通过图神经网络来挖掘更深层次的语义和句法信息。在Restaurant14、Laptop14和Twitter公开数据集上进行实验,实验结果表明,与基准模型相比,本文提出的模型具有更好的分类效果。 展开更多
关键词 方面级情感分析 注意力机制 方面感知注意力 类型感知图 图神经网络
在线阅读 下载PDF
集成句法与情感知识的方面级情感分析模型
3
作者 李自亮 朱广丽 +3 位作者 张玉雷 刘佳佳 焦熠璇 张顺香 《计算机应用》 北大核心 2025年第6期1724-1731,共8页
方面级情感分析(ABSA)是一项细粒度的情感分析任务,旨在分析给定文本中特定方面词的情感极性。现有的ABSA方法采用图卷积网络(GCN)处理句法和语义信息,然而这些方法将方面词的所有句法依赖等同看待,忽略了远距离不相关词对目标方面词的... 方面级情感分析(ABSA)是一项细粒度的情感分析任务,旨在分析给定文本中特定方面词的情感极性。现有的ABSA方法采用图卷积网络(GCN)处理句法和语义信息,然而这些方法将方面词的所有句法依赖等同看待,忽略了远距离不相关词对目标方面词的影响,造成目标方面词和观点词权重分配的不适宜,且对语义信息提取不充分。针对这些问题,提出一种集成句法与情感知识的ABSA模型。首先,根据句法信息构建可达矩阵,以此为基础,利用方面词进行中心位置赋权构建句法增强图;其次,通过外部情感知识和方面增强构建语义增强图,利用图卷积分别对句法增强图和语义增强图进行充分建模形成不同的特征通道;再次,通过双仿射注意力更有效地交互融合句法信息和语义信息;最后,运用平均池化和拼接操作获取方面词对应的最终特征向量。实验结果表明,相较于深度依赖感知图卷积网络模型DA-GCN-BERT(deep Dependency Aware GCN+BERT(Bidirectional Encoder Representations from Transformers)),所提模型在5个公开数据集上的准确率分别提高了1.71、1.41、1.27、0.17和0.43个百分点。可见,所提模型在ABSA领域具有很强的适用性。 展开更多
关键词 自然语言处理 方面级情感分析 图卷积网络 双仿射注意力 平均池化
在线阅读 下载PDF
基于代码生成的细粒度情感分析方法
4
作者 帅健 王中卿 陈嘉沥 《计算机应用》 北大核心 2025年第6期1827-1832,共6页
细粒度情感分析(ABSA)任务越来越受到人们的关注。针对目前主流的ABSA方法无法充分利用语义关系且无法充分学习各情感元素之间联系的局限,提出一种基于代码生成的ABSA方法。首先,对应各情感元素与编程语言(PL);其次,按照对应原则将实验... 细粒度情感分析(ABSA)任务越来越受到人们的关注。针对目前主流的ABSA方法无法充分利用语义关系且无法充分学习各情感元素之间联系的局限,提出一种基于代码生成的ABSA方法。首先,对应各情感元素与编程语言(PL);其次,按照对应原则将实验数据集构造成代码生成任务的数据样式,代码样式可以更好地表达各情感元素之间的联系;最后,利用当前大语言模型(LLM)的强大性能及代码生成方法在事件抽取任务上的良好表现得到更准确的结果。为了验证所提方法的有效性,使用Paraphrase、Seq2Path和意见树生成(OTG)方法进行对比实验。实验结果表明,所提方法在ABSA任务中的餐厅数据集上F1分数比OTG方法高2.82个百分点,具有更好的效果。 展开更多
关键词 细粒度情感分析 结构化生成 代码生成 预训练生成模型 四重提取
在线阅读 下载PDF
依赖类型及距离增强的方面级情感分析模型
5
作者 赵彪 秦玉华 +2 位作者 田荣坤 胡月航 陈芳锐 《计算机应用》 北大核心 2025年第8期2507-2514,共8页
方面级情感分析(ABSA)任务旨在判断评论语句中特定方面词的情感极性。在ABSA领域中,同时提取语法和语义这2种信息的双通道模型取得了一定的效果。然而,现有模型未能考虑语法节点间的重要程度不同、全局范围下的注意力机制引入的额外噪... 方面级情感分析(ABSA)任务旨在判断评论语句中特定方面词的情感极性。在ABSA领域中,同时提取语法和语义这2种信息的双通道模型取得了一定的效果。然而,现有模型未能考虑语法节点间的重要程度不同、全局范围下的注意力机制引入的额外噪声以及同类特征间存在一定关联性等问题。为了解决以上问题,提出一种依赖类型及距离增强的双通道图卷积模型。首先,在语法模块引入依赖类型以衡量不同邻近节点的重要程度;其次,以依赖树距离为依据构造掩码矩阵进而过滤与语法无关的噪声;最后,引入一个有监督对比损失帮助模型学习同类特征间的关联性。实验结果表明,相较于次优模型DGNN(Dual Graph Neural Network),所提模型在SemEval-2014 Restaurant、SemEval-2014 Laptop和Twitter这3个数据集上分别取得了0.11、0.94和1.01个百分点的准确率提升,以及0.63、1.66和0.83个百分点的宏F1值提升,验证了所提模型的有效性。 展开更多
关键词 方面级别情感分析 图神经网络 依赖类型 依赖树距离 有监督对比损失
在线阅读 下载PDF
基于句法依存增强和方面语义聚焦的方面级情感分析
6
作者 王一力 陈浩文 袁程胜 《计算机应用研究》 北大核心 2025年第9期2669-2675,共7页
现有的方面级情感分析研究大多采用基于依存树的图神经网络来构建模型,但忽略了原始依存树包含的大量无关依赖关系且缺乏针对特定方面语义的特征提取。为此,提出了一种基于句法依存增强和方面语义聚焦的双通道图卷积网络模型(SADGCN)来... 现有的方面级情感分析研究大多采用基于依存树的图神经网络来构建模型,但忽略了原始依存树包含的大量无关依赖关系且缺乏针对特定方面语义的特征提取。为此,提出了一种基于句法依存增强和方面语义聚焦的双通道图卷积网络模型(SADGCN)来提升情感分析的预测精度。该模型主要由句法增强模块与语义增强模块组成。对于句法增强模块,提出了一种高效的面向方面词的选择方法来重塑句法依存树,从而更加准确地捕获与目标方面高度相关的句法信息;对于语义增强模块,设计了一种方面聚焦注意力机制来与全局性自注意力机制相融合的策略,从而帮助模型学习特定方面的语义特征表示。最后将两个模块学习到的信息进行特征融合以预测情感极性。三个基准数据集上的实验结果表明,所提模型相比于对比模型取得了更优的效果。 展开更多
关键词 方面级情感分析 句法结构 语义特征 图卷积网络 注意力机制
在线阅读 下载PDF
基于ABSA方法的移动政务用户情感分析 被引量:6
7
作者 商容轩 张斌 米加宁 《图书与情报》 CSSCI 北大核心 2022年第3期63-72,共10页
移动政务APP作为各级政府服务群众的重要渠道,其在线评论的情感倾向会对用户的线上政务满意度产生重要影响。为了对当前移动政务APP用户评论进行细粒度情感分析,文章基于ABSA方法进行移动政务用户评论的情感倾向性测度:运用LDA主题模型... 移动政务APP作为各级政府服务群众的重要渠道,其在线评论的情感倾向会对用户的线上政务满意度产生重要影响。为了对当前移动政务APP用户评论进行细粒度情感分析,文章基于ABSA方法进行移动政务用户评论的情感倾向性测度:运用LDA主题模型进行隐式方面主题的抽取,并结合期望确认理论与信息系统成功模型构建移动政务用户需求模型;同时,选择BERT模型对实体词进行情感倾向概率判定,进而通过多维度间的情感倾向匹配实现方面级的情感强度测量。研究发现,通过该方法可以挖掘移动政务用户的需求重点与情感状态,当前用户对服务质量呈现积极的情感状态,而对系统质量与信息质量的情感评价则较为负面。 展开更多
关键词 移动政务 absa方法 用户情感 方面级 情感分析
在线阅读 下载PDF
基于方面-词性感知的方面级情感分析 被引量:1
8
作者 夏卫欢 廖列法 +1 位作者 张守信 张燕琴 《计算机工程》 CAS CSCD 北大核心 2024年第3期68-77,共10页
方面级情感分析是自然语言处理的研究热点之一,其任务目的是预测句子中给定方面的情感极性。目前已有研究大多忽略了方面词和特定词性单词在过滤情感极性相关上下文语义信息和理解上下文语法信息中的作用。为此,提出一种基于方面-词性... 方面级情感分析是自然语言处理的研究热点之一,其任务目的是预测句子中给定方面的情感极性。目前已有研究大多忽略了方面词和特定词性单词在过滤情感极性相关上下文语义信息和理解上下文语法信息中的作用。为此,提出一种基于方面-词性感知的图卷积网络ASP_POSGCN。采用双向长短期记忆网络建模上下文和词性信息,经由门控机制筛选方面词相关上下文语义信息,再使用词性信息隐藏层状态进一步过滤;同时设计方面-词性感知矩阵算法,根据不同词性单词对方面词情感极性的贡献重构句子原始依存关系以获取重构依存句法图,将原始依存句法图和重构依存句法图应用于双通道图卷积网络和多图感知机制;最后,使用过滤后的上下文语义信息与双通道图卷积网络的输出计算注意力得到最终分类表示。实验结果表明,该模型在Twitter、Laptop14、Restaurant14和Restaurant164个公开数据集上的准确率分别为74.57%、79.15%、83.84%、91.23%,F1值分别为72.59%、75.76%、77.00%、77.11%,与传统方面级情感分析基准模型相比均有提升,有助于方面级的情感极性分类。 展开更多
关键词 方面级情感分析 图卷积网络 门控机制 词性信息 多图感知机制
在线阅读 下载PDF
结合语法增强与噪声削减的方面级情感分析模型 被引量:1
9
作者 汪红松 李嘉展 +1 位作者 叶浩贤 陶然 《计算机工程与应用》 CSCD 北大核心 2024年第13期152-161,共10页
方面级情感分析的主要目标是判断句子中给定方面词的情感极性。最近的研究主要采用依存句法信息,隐式地关联方面词与目标词之间的情感交互信息。但结合依存句法信息方法,缺乏识别以方面词为中心的局部上下文信息。此外,对繁杂的语法信... 方面级情感分析的主要目标是判断句子中给定方面词的情感极性。最近的研究主要采用依存句法信息,隐式地关联方面词与目标词之间的情感交互信息。但结合依存句法信息方法,缺乏识别以方面词为中心的局部上下文信息。此外,对繁杂的语法信息进行等价建模,会引入损害模型性能的噪声。针对以往研究中存在的问题,提出了结合语法增强与噪声削减的神经网络模型。该方法在依存句法信息基础上融合了成分信息,使模型不仅能关注词与词之间的全局依赖信息,同时能关注以方面词为中心的局部依赖信息。同时,为了降低语法信息的噪声干扰,模型以依存句法树的距离信息为依据,弱化了远距离的噪声干扰。最后,模型在四个基准数据集上进行了实验,并在所有数据集上的性能都优于基线模型。 展开更多
关键词 方面级情感分析 依存句法 成分信息 位置信息
在线阅读 下载PDF
基于BERT与注意力机制的方面级隐式情感分析模型 被引量:3
10
作者 杨春霞 韩煜 +1 位作者 陈启岗 马文文 《南京信息工程大学学报(自然科学版)》 CAS 北大核心 2023年第5期551-560,共10页
在方面级情感文本中存在部分不含情感词的评论句,对其情感的研究被称为方面级隐式情感分析.现有分析模型在预训练过程中可能会丢失与方面词相关的上下文信息,并且不能准确提取上下文中深层特征,本文首先构造了方面词感知BERT预训练模型... 在方面级情感文本中存在部分不含情感词的评论句,对其情感的研究被称为方面级隐式情感分析.现有分析模型在预训练过程中可能会丢失与方面词相关的上下文信息,并且不能准确提取上下文中深层特征,本文首先构造了方面词感知BERT预训练模型,通过将方面词引入到基础BERT的输入嵌入结构中,生成与方面词信息相关的词向量;然后构造了语境感知注意力机制,对由编码层得到的深层隐藏向量,将其中的语义和句法信息引入到注意力权重计算过程,使注意力机制能更加准确地分配权重到与方面词相关的上下文.对比实验结果表明,本文模型的效果优于基线模型. 展开更多
关键词 方面级情感分析 隐式情感分析 门控循环单元 注意力机制 BERT模型
在线阅读 下载PDF
融合匹配长短时记忆网络和语法距离的方面级情感分析模型 被引量:3
11
作者 刘辉 马祥 +1 位作者 张琳玉 何如瑾 《计算机应用》 CSCD 北大核心 2023年第1期45-50,共6页
针对现阶段方面级情感分析(ABSA)存在的方面词与不相关上下文错误匹配以及缺乏语法层面特征的问题,提出一种融合匹配长短时记忆网络(mLSTM)和语法距离的ABSA模型mLSTM-GCN。首先,逐词计算方面词与上下文的关联性,并将得到的注意力权重... 针对现阶段方面级情感分析(ABSA)存在的方面词与不相关上下文错误匹配以及缺乏语法层面特征的问题,提出一种融合匹配长短时记忆网络(mLSTM)和语法距离的ABSA模型mLSTM-GCN。首先,逐词计算方面词与上下文的关联性,并将得到的注意力权重与上下文表示融合作为mLSTM的输入,从而得到与方面词关联度更高的上下文表示;然后,引入语法距离以获得与方面词语法关联度更高的上下文,从而获取更多的上下文特征来指导方面词的建模,并通过方面掩盖层得到方面表示;最后,结合位置权重、上下文表示以及方面表示来进行信息交互,从而获取用于情感分析的特征。在Twitter、REST14和LAP14数据集上的实验结果表明,相较于特定方面的图卷积网络(ASGCN),mLSTM-GCN的准确率分别提升1.32、2.50和1.63个百分点,宏平均F1分别提升2.52、2.19和1.64个百分点。可见,mLSTM-GCN能够有效降低方面词与不相关上下文错误匹配的概率,提升分类效果。 展开更多
关键词 方面级情感分析 长短时记忆网络 语法距离 图卷积 注意力机制
在线阅读 下载PDF
面向双注意力网络的特定方面情感分析模型 被引量:20
12
作者 孙小婉 王英 +1 位作者 王鑫 孙玉东 《计算机研究与发展》 EI CSCD 北大核心 2019年第11期2384-2395,共12页
特定方面情感分析已经成为自然语言处理领域的研究热点,其通过学习文本上下文的信息判别文本中特定方面的情感极性,可以更加有效地帮助人们了解用户对不同方面的情感表达.当前,将注意力机制和神经网络相结合的模型在解决特定方面情感分... 特定方面情感分析已经成为自然语言处理领域的研究热点,其通过学习文本上下文的信息判别文本中特定方面的情感极性,可以更加有效地帮助人们了解用户对不同方面的情感表达.当前,将注意力机制和神经网络相结合的模型在解决特定方面情感分析任务时大多仅考虑单一层面的注意力信息,并且卷积神经网络无法获取全局结构信息、循环神经网络训练时间过长且单词间的依赖程度随着距离增加而逐渐减弱.针对上述问题,提出一种面向双注意力网络的特定方面情感分析(dual-attention networks for aspect-level sentiment analysis,DANSA)模型.首先,引入多头注意力机制,通过对输入进行多次不同的线性变换操作,获取更全面的注意力信息,同时,多头注意力机制可以实现并行化计算,保证了DANSA的训练速度.其次,DANSA引入自注意力机制,通过计算输入中每个单词与其他所有单词的注意力得分获取全局结构信息,并且单词间的依赖程度不会受到时间和句子长度的影响.最后,融合上下文自注意力信息与特定方面单词注意力信息,共同作为特定方面情感预测的依据,最终实现特定方面情感极性的预测.相比结合注意力机制的神经网络,DANSA弥补了注意力信息单一问题,不仅可以有效获取全局结构信息,还能够实现并行化计算,大大降低了训练时间.在SemEval2014数据集和Twitter数据集上进行实验,DANSA获得了更好的分类效果,进一步证明了DANSA的有效性. 展开更多
关键词 特定方面情感分析 自注意力机制 多头注意力机制 双注意力网络 自然语言处理
在线阅读 下载PDF
基于BLSTM与方面注意力模块的情感分类方法 被引量:18
13
作者 彭祝亮 刘博文 +3 位作者 范程岸 王杰 肖明 廖泽恩 《计算机工程》 CAS CSCD 北大核心 2020年第3期60-65,72,共7页
基于方面的情感分析已广泛应用于文本信息挖掘,但在句子情感极性模糊或包含多个不同方面情感极性时难以准确提取特征信息,削弱了情感极性分类效果。为解决该问题,提出一种结合双向长短记忆网络和方面注意力模块的情感分类方法。利用多... 基于方面的情感分析已广泛应用于文本信息挖掘,但在句子情感极性模糊或包含多个不同方面情感极性时难以准确提取特征信息,削弱了情感极性分类效果。为解决该问题,提出一种结合双向长短记忆网络和方面注意力模块的情感分类方法。利用多个方面注意力模块同时对不同方面进行独立训练,使每个方面信息与注意力操作互不影响,各自进行注意力参数的学习与调整,以充分提取特定方面的隐藏信息,从而更准确地识别不同方面的情感极性。在SemEval数据集上的实验结果表明,该方法相对现有的基准情感分析方法,可有效提升分类精确率、查全率与F1值,优化情感分类效果。 展开更多
关键词 深度学习 基于方面的情感分析 循环神经网络 自然语言处理 注意力机制
在线阅读 下载PDF
基于图神经网络的方面级情感分析 被引量:6
14
作者 张合桥 苟刚 陈青梅 《计算机应用研究》 CSCD 北大核心 2021年第12期3574-3580,3585,共8页
目前基于循环神经网络和注意力机制的方面级情感分析模型缺乏解释相关句法约束和远程单词依赖关系。针对该问题提出结合句子依存树和单词序列信息建立句子关系图模型。首先将句子表示为图,单词作为图的节点,依存句法树的边和单词序列作... 目前基于循环神经网络和注意力机制的方面级情感分析模型缺乏解释相关句法约束和远程单词依赖关系。针对该问题提出结合句子依存树和单词序列信息建立句子关系图模型。首先将句子表示为图,单词作为图的节点,依存句法树的边和单词序列作为图的边;然后提出邻接矩阵标记方案对句子关系图进行标记;最后利用图神经网络实现节点和边的分类任务。该模型在SemEval2014任务中的restaurant和laptop两个数据集上进行实验,在两个数据集上F 1值提升了5%左右。实验结果表明,将句子转换成图利用图神经网络对句子进行方面级情感分析是有益的。 展开更多
关键词 方面级情感分析 情感分析 图神经网络 自然语言处理
在线阅读 下载PDF
基于虚拟依存关系与知识增强的方面级情感分析 被引量:4
15
作者 孔博 韩虎 +2 位作者 陈景景 白雪 邓飞 《计算机工程》 CAS CSCD 北大核心 2023年第10期53-63,共11页
借助句法依赖信息和外部知识的图神经网络近年来成为方面级情感分析领域的一个研究热点,但是现有研究存在语法信息提取不充分和利用不合理等问题,同时未考虑增强文本方面词与意见词等关键节点的背景知识。此外,基于注意力机制的方法没... 借助句法依赖信息和外部知识的图神经网络近年来成为方面级情感分析领域的一个研究热点,但是现有研究存在语法信息提取不充分和利用不合理等问题,同时未考虑增强文本方面词与意见词等关键节点的背景知识。此外,基于注意力机制的方法没有建立方面词与上下文词的语法信息交互,导致方面词错误地关注到与其语法无关的上下文词信息。提出一种基于虚拟依存关系与双知识增强的多交互图卷积网络模型。对方面词内每个单词构建依赖树,依据虚拟依存关系进行加权构造虚拟依存图,依据外部情感知识构造情感依存图,使用双通道图卷积神经网络处理虚拟依存图与情感依存图并进行融合,对融合后特定方面的特征表示进行语义和语法双交互。利用概念知识增强特定方面后的特征表示与上下文表示并进行知识注意力交互,对多种不同的增强表示进行融合从而实现不同表示间的共享与互补。实验结果表明,相较于经典的图卷积网络模型ASGCN,该模型在Rest15和Rest16数据集上的F1值分别提升4.71和8.57个百分点,具有较好的情感分类性能。 展开更多
关键词 方面级情感分析 虚拟依存关系 知识增强 图卷积网络 情感知识 概念知识
在线阅读 下载PDF
嵌入不同邻域表征的方面级情感分析模型 被引量:2
16
作者 刘欢 窦全胜 《计算机应用》 CSCD 北大核心 2023年第1期37-44,共8页
方面级情感分析(ABSA)任务旨在识别特定方面的情感极性,然而现有的相关模型对结构不定的自然语句缺少对方面词上下文的短距离约束,且容易忽略句法关系,因而难以准确判定方面的情感极性。针对上述问题,提出嵌入不同邻域表征(EDNR)的ABSA... 方面级情感分析(ABSA)任务旨在识别特定方面的情感极性,然而现有的相关模型对结构不定的自然语句缺少对方面词上下文的短距离约束,且容易忽略句法关系,因而难以准确判定方面的情感极性。针对上述问题,提出嵌入不同邻域表征(EDNR)的ABSA模型。在该模型中,在获得句子语序信息的基础上,采用近邻策略并结合卷积神经网络(CNN)获取方面的邻域信息,减少较远无关信息对模型的影响;同时,引入语句的语法信息,增加单词之间的依赖关系;将上述两种特征融合后,使用Mask与注意力机制来特别关注方面信息,减少无用信息对情感分析模型的干扰。此外,为评价上下文和语法信息对情感极性的影响程度,提出一个信息评估系数。在5个公共数据集上进行实验的结果表明,与情感分析模型聚合图卷积网络-最大值函数(AGCN-MAX)相比,EDNR模型在数据集14Lap上的正确率和F1值分别提升了2.47和2.83个百分点。由此可见,EDNR模型可以有效捕获情感特征,提高分类性能。 展开更多
关键词 方面级情感分析 邻域表征 情感极性 近邻策略 信息评估系数
在线阅读 下载PDF
融合多窗口局部信息的方面级情感分析模型 被引量:1
17
作者 郑智雄 刘建华 +2 位作者 孙水华 徐戈 林鸿辉 《计算机应用》 CSCD 北大核心 2023年第6期1796-1802,共7页
针对目前方面级情感分析(ABSA)模型过多依赖关系较为稀疏的句法依赖树学习特征表示,导致模型学习局部信息能力不足的问题,提出了一种融合多窗口局部信息的ABSA模型MWGAT(combining Multi-Window local information and Graph ATtention ... 针对目前方面级情感分析(ABSA)模型过多依赖关系较为稀疏的句法依赖树学习特征表示,导致模型学习局部信息能力不足的问题,提出了一种融合多窗口局部信息的ABSA模型MWGAT(combining Multi-Window local information and Graph ATtention network)。首先,通过多窗口局部特征学习机制学习局部上下文特征,并挖掘文本包含的潜在局部信息;其次,采用能够较好理解依赖树的图注意力网络(GAT)学习句法依赖树所表示的语法结构信息,并生成语法感知的上下文特征;最后,将这两种表示不同语义信息的特征融合,形成既包含句法依赖树的语法信息又包含局部信息的特征表示,从而便于分类器高效判别方面词的情感极性。在Restaurant、Laptop和Twitter这3个公开数据集上进行实验,结果表明与结合了句法依赖树的T-GCN(Type-aware Graph Convolutional Network)模型相比,所提模型的Macro-F1分数分别提高了2.48%、2.37%和0.32%。可见,所提模型能够有效挖掘潜在的局部信息,并更为精确地预测方面词的情感极性。 展开更多
关键词 图神经网络 注意力机制 方面级情感分析 局部特征学习 图注意力网络 门控机制
在线阅读 下载PDF
基于BERT与记忆网络的长文本方面级情感分析 被引量:6
18
作者 李攀 吴亚东 +2 位作者 褚琦凯 付朝帅 张贵宇 《传感器与微系统》 CSCD 北大核心 2022年第2期118-122,共5页
目前在方面级情感分析(ABSA)方法中,利用上下文或方面短语的平均值来计算方面短语或上下文之间注意力得分的方法往往会产生较大的信息损失,导致模型在长文本分类上的性能降低。为此,研究了一种建立在BERT表示上的记忆网络模型,BDMN。首... 目前在方面级情感分析(ABSA)方法中,利用上下文或方面短语的平均值来计算方面短语或上下文之间注意力得分的方法往往会产生较大的信息损失,导致模型在长文本分类上的性能降低。为此,研究了一种建立在BERT表示上的记忆网络模型,BDMN。首先,把句子构造成多[CLS]的Token嵌入形式,然后,从BERT输出中获取到各短句的初始化向量,将其作为记忆体与方面短语的[CLS]向量进行充分注意力交互,最后,拼接输出注意力层所有短句的方面短语表示作为最终的情感分类特征向量。在AI Challenger 2018细粒度情感分析数据集上进行了模型评估,与目前的主流模型相比,其效果达到了最好。 展开更多
关键词 方面级情感分析 BERT 记忆网络 注意力机制
在线阅读 下载PDF
融合多通道图卷积网络的方面级情感分析模型 被引量:2
19
作者 杨海洋 张兴鹏 《计算机工程》 CAS CSCD 北大核心 2023年第11期61-69,共9页
方面级情感分析是一项细粒度的情感分析任务,旨在对给定文本中多个特定方面进行情感极性分析。大多数基于句法分析的模型严重依赖依存树的单一解析结果,由于这种结构仅揭示2个单词之间的依存关系,因此无法捕捉方面词与上下文之间的联系... 方面级情感分析是一项细粒度的情感分析任务,旨在对给定文本中多个特定方面进行情感极性分析。大多数基于句法分析的模型严重依赖依存树的单一解析结果,由于这种结构仅揭示2个单词之间的依存关系,因此无法捕捉方面词与上下文之间的联系。此外,大部分研究忽略了依存解析中的关系类型,可能丢失重要特征信息。提出一种基于多通道的图卷积网络(MCGCN)模型,主要包含成分图模块、依存图模块(DepGCN)以及自注意力机制,旨在挖掘句子结构中丰富的句法和语法信息。此外,为减少依存解析错误,在DepGCN中引入依存关系类型和依存概率以获取更精准的语法表示。利用预训练模型进行词嵌入得到文本初始化向量,分别输入到融合不同句法分析的图卷积网络进行不同节点的学习,利用自注意力机制能有效地对方面词进行全局的语义信息关联。最后将3个模块的输出通过仿射交互层进行交互学习,进而提升模型的表征能力。实验结果表明,MCGCN模型在Laptop数据集上的ACC值和F1值分别为78.48%和75.03%,在Twitter数据集上的ACC值和F1值分别为75.92%和74.53%,相较于基准模型均有提升,在3个数据集上的F1值都有1%~3%的提升。 展开更多
关键词 方面级情感分析 句法分析 图卷积网络 依存树 自注意力
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部