方面情感三元组抽取(aspect sentiment triplet extraction,ASTE)是方面级情感分析(aspect based sentiment analysis,ABSA)中具有挑战性的子任务之一,旨在从文本中抽取方面术语、观点术语和情感极性三元组.近期基于生成式的抽取方法取...方面情感三元组抽取(aspect sentiment triplet extraction,ASTE)是方面级情感分析(aspect based sentiment analysis,ABSA)中具有挑战性的子任务之一,旨在从文本中抽取方面术语、观点术语和情感极性三元组.近期基于生成式的抽取方法取得了出色的表现,这些方法通过顺序串联目标三元组来实现自回归式三元组生成.然而,这种串联方法可能导致无序三元组之间存在顺序依赖,从而在解码过程中引入错误累积.为解决这个问题,提出了基于术语提示双路文本生成(term-prompted and dual-path text generation,TePDuP)的方法.该方法首先利用机器阅读理解(machine reading comprehension,MRC)实现方面术语和观点术语的并行化抽取,然后将它们作为提示前缀来引导条件式三元组的生成,形成双路文本生成框架.同时,在训练阶段引入计划采样的方法来修正MRC抽取错误所带来的偏差.为进一步提高性能,引入生成概率将方面术语和观点术语引导的结果合并,以增强模型的鲁棒性.基于ASTE-DATA-V2数据集的实验结果表明,提出的方法是有效的且明显优于其他基线模型,并给出具体案例分析,证明该方法一定程度上解决了前述问题.展开更多
方面情感三元组抽取(ASTE)是方面情感分析中一项极具挑战性的子任务,目的是提取所给句子中的方面项、观点项和对应的情感极性。现有的面向ASTE任务的模型分为流水线模型和端到端模型。针对流水线模型易受到错误传播的影响,且大部分现有...方面情感三元组抽取(ASTE)是方面情感分析中一项极具挑战性的子任务,目的是提取所给句子中的方面项、观点项和对应的情感极性。现有的面向ASTE任务的模型分为流水线模型和端到端模型。针对流水线模型易受到错误传播的影响,且大部分现有端到端模型忽略了句子中丰富的句法信息问题,提出一种语义和句法增强的双通道方面情感三元组抽取模型(SSED-ASTE)。首先,使用BERT(Bidirectional Encoder Representation from Transformers)编码器对上下文编码;其次,使用双向长短期记忆(Bi-LSTM)网络捕捉上下文语义依赖关系;再次,通过2个并行的图卷积网络(GCN)分别使用自注意力机制和依存句法分析提取语义特征和句法特征并融合;最后,使用网格标记方案(GTS)抽取三元组。在4个公开数据集上进行实验分析,与GTS-BERT模型相比,所提模型的F1值分别提升了0.29、1.50、2.93和0.78个百分点。实验结果表明,所提模型可以有效利用句子中隐含的语义信息和句法信息,实现较准确的三元组抽取。展开更多
文摘方面情感三元组抽取(aspect sentiment triplet extraction,ASTE)是方面级情感分析(aspect based sentiment analysis,ABSA)中具有挑战性的子任务之一,旨在从文本中抽取方面术语、观点术语和情感极性三元组.近期基于生成式的抽取方法取得了出色的表现,这些方法通过顺序串联目标三元组来实现自回归式三元组生成.然而,这种串联方法可能导致无序三元组之间存在顺序依赖,从而在解码过程中引入错误累积.为解决这个问题,提出了基于术语提示双路文本生成(term-prompted and dual-path text generation,TePDuP)的方法.该方法首先利用机器阅读理解(machine reading comprehension,MRC)实现方面术语和观点术语的并行化抽取,然后将它们作为提示前缀来引导条件式三元组的生成,形成双路文本生成框架.同时,在训练阶段引入计划采样的方法来修正MRC抽取错误所带来的偏差.为进一步提高性能,引入生成概率将方面术语和观点术语引导的结果合并,以增强模型的鲁棒性.基于ASTE-DATA-V2数据集的实验结果表明,提出的方法是有效的且明显优于其他基线模型,并给出具体案例分析,证明该方法一定程度上解决了前述问题.
文摘方面情感三元组抽取(ASTE)是方面情感分析中一项极具挑战性的子任务,目的是提取所给句子中的方面项、观点项和对应的情感极性。现有的面向ASTE任务的模型分为流水线模型和端到端模型。针对流水线模型易受到错误传播的影响,且大部分现有端到端模型忽略了句子中丰富的句法信息问题,提出一种语义和句法增强的双通道方面情感三元组抽取模型(SSED-ASTE)。首先,使用BERT(Bidirectional Encoder Representation from Transformers)编码器对上下文编码;其次,使用双向长短期记忆(Bi-LSTM)网络捕捉上下文语义依赖关系;再次,通过2个并行的图卷积网络(GCN)分别使用自注意力机制和依存句法分析提取语义特征和句法特征并融合;最后,使用网格标记方案(GTS)抽取三元组。在4个公开数据集上进行实验分析,与GTS-BERT模型相比,所提模型的F1值分别提升了0.29、1.50、2.93和0.78个百分点。实验结果表明,所提模型可以有效利用句子中隐含的语义信息和句法信息,实现较准确的三元组抽取。