A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductiv...A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductivity and effective absorption coefficient of semitransparent materials.For the direct model,the spherical harmonic method and the finite volume method are used to solve the coupled conduction-radiation heat transfer problem in an absorbing,emitting,and non-scattering 2D axisymmetric gray medium in the background of laser flash method.For the identification part,firstly,the temperature field and the incident radiation field in different positions are chosen as observables.Then,a traditional identification model based on PSO algorithm is established.Finally,multilayer ANNs are built to fit and replace the direct model in the traditional identification model to speed up the identification process.The results show that compared with the traditional identification model,the time cost of the hybrid identification model is reduced by about 1 000 times.Besides,the hybrid identification model remains a high level of accuracy even with measurement errors.展开更多
An effective approach for describing complicated water quality processes is very important for river water quality management. We built two artificial neural network(ANN) models,a feed-forward back-propagation(BP) mod...An effective approach for describing complicated water quality processes is very important for river water quality management. We built two artificial neural network(ANN) models,a feed-forward back-propagation(BP) model and a radial basis function(RBF) model,to simulate the water quality of the Yangtze and Jialing Rivers in reaches crossing the city of Chongqing,P. R. China. Our models used the historical monitoring data of biological oxygen demand,dissolved oxygen,ammonia,oil and volatile phenolic compounds. Comparison with the one-dimensional traditional water quality model suggest that both BP and RBF models are superior; their higher accuracy and better goodness-of-fit indicate that the ANN calculation of water quality agrees better with measurement. It is demonstrated that ANN modeling can be a tool for estimating the water quality of the Yangtze River. Of the two ANN models,the RBF model calculates with a smaller mean error,but a larger root mean square error. More effort to identify out the causes of these differences would help optimize the structures of neural network water-quality models.展开更多
Background: Leaf Area Index(LAI) is an important parameter used in monitoring and modeling of forest ecosystems. The aim of this study was to evaluate performance of the artificial neural network(ANN) models to predic...Background: Leaf Area Index(LAI) is an important parameter used in monitoring and modeling of forest ecosystems. The aim of this study was to evaluate performance of the artificial neural network(ANN) models to predict the LAI by comparing the regression analysis models as the classical method in these pure and even-aged Crimean pine forest stands.Methods: One hundred eight temporary sample plots were collected from Crimean pine forest stands to estimate stand parameters. Each sample plot was imaged with hemispherical photographs to detect the LAI. The partial correlation analysis was used to assess the relationships between the stand LAI values and stand parameters, and the multivariate linear regression analysis was used to predict the LAI from stand parameters. Different artificial neural network models comprising different number of neuron and transfer functions were trained and used to predict the LAI of forest stands.Results: The correlation coefficients between LAI and stand parameters(stand number of trees, basal area, the quadratic mean diameter, stand density and stand age) were significant at the level of 0.01. The stand age, number of trees, site index, and basal area were independent parameters in the most successful regression model predicted LAI values using stand parameters(R_(adj)~2=0.5431). As corresponding method to predict the interactions between the stand LAI values and stand parameters, the neural network architecture based on the RBF 4-19-1 with Gaussian activation function in hidden layer and the identity activation function in output layer performed better in predicting LAI(SSE(12.1040), MSE(0.1223), RMSE(0.3497), AIC(0.1040), BIC(-77.7310) and R^2(0.6392)) compared to the other studied techniques.Conclusion: The ANN outperformed the multivariate regression techniques in predicting LAI from stand parameters. The ANN models, developed in this study, may aid in making forest management planning in study forest stands.展开更多
In recent times, membranes have found wide applications in gas separation processes. As most of the industrial membrane separation units use hollow fiber modules, having a proper model for simulating this type of memb...In recent times, membranes have found wide applications in gas separation processes. As most of the industrial membrane separation units use hollow fiber modules, having a proper model for simulating this type of membrane module is very useful in achieving guidelines for design and characterization of membrane separation units. In this study, a model based on Coker, Freeman, and Fleming's study was used for estimating the required membrane area. This model could simulate a multicomponent gas mixture separation by solving the governing differential mass balance equations with numerical methods. Results of the model were validated using some binary and multicomponent experimental data from the literature. Also, the artificial neural network (ANN) technique was applied to predict membrane gas separation behavior and the results of the ANN simulation were compared with the simulation results of the model and the experimental data. Good consistency between these results shows that ANN method can be successfully used for prediction of the separation behavior after suitable training of the network展开更多
In this research, a method called ANNMG is presented to integrate Artificial Neural Networks and Geostatistics for optimum mineral reserve evaluation. The word ANNMG simply means Artificial Neural Network Model integr...In this research, a method called ANNMG is presented to integrate Artificial Neural Networks and Geostatistics for optimum mineral reserve evaluation. The word ANNMG simply means Artificial Neural Network Model integrated with Geostatiscs, In this procedure, the Artificial Neural Network was trained, tested and validated using assay values obtained from exploratory drillholes. Next, the validated model was used to generalize mineral grades at known and unknown sampled locations inside the drilling region respectively. Finally, the reproduced and generalized assay values were combined and fed to geostatistics in order to develop a geological 3D block model. The regression analysis revealed that the predicted sample grades were in close proximity to the actual sample grades, The generalized grades from the ANNMG show that this process could be used to complement exploration activities thereby reducing drilling requirement. It could also be an effective mineral reserve evaluation method that could oroduce optimum block model for mine design.展开更多
An artificial neural network (ANN) model is established to predict plastic flow behaviors of the 603 armor steel, based on experiments over wide ranges of strain rates (0. 001 -4 500 s -1 ) and temperatures (288 ...An artificial neural network (ANN) model is established to predict plastic flow behaviors of the 603 armor steel, based on experiments over wide ranges of strain rates (0. 001 -4 500 s -1 ) and temperatures (288 -873 K). The descriptive and predictive capabilities of the ANN model are com- pared with several phenomenological and physically based constitutive models. The ANN model has a much better applicability than the other models in characterization of the flow stress. The tempera- ture and the strain rate effects on the flow stress can be described successfully by the ANN model, with an average error of 1.78% for both quasi-static and dynamic loading conditions. Besides its high accuracy in prediction of the strain rate jump tests, the ANN model is more convenient in model es- tablishment and data processing. The ANN model developed in this study may serve as a valid and ef- fective tool to predict plastic behaviors of the 603 steel under complex loading conditions.展开更多
A method of the forward operation of color appearance (from colorimetric attributes to color appearance attributes) using an artificial neural network (ANN) is presented The neural network model developed is a multila...A method of the forward operation of color appearance (from colorimetric attributes to color appearance attributes) using an artificial neural network (ANN) is presented The neural network model developed is a multilayer feedforward neural network model for predicting color appearance model (CAM). This method greatly decreased the mathematical computation in color appearance prediction. The error backed-propagation (BP) algorithm was applied in the training of the neural networks, and it was trained and tested by the LUTCHI color appearance datasets which are the most comprehensive one in testing color appearance model. CRT was selected as a typical example in experiment because it is usually used as self-luminous object in fact, and several ways for choosing training samples were included and compared each other. The testing results show that the color appearance prediction using artificial neural network is well consistent with visual evaluation.展开更多
In this paper we present a novel approach to modeling AlGaN/GaN high electron mobility transistor (HEMT) with an artificial neural network (ANN). The AlGaN/GaN HEMT device structure and its fabrication process are...In this paper we present a novel approach to modeling AlGaN/GaN high electron mobility transistor (HEMT) with an artificial neural network (ANN). The AlGaN/GaN HEMT device structure and its fabrication process are described. The circuit-based Neuro-space mapping (neuro-SM) technique is studied in detail. The EEHEMT model is implemented according to the measurement results of the designed device, which serves as a coarse model. An ANN is proposed to model AIGaN/CaN HEMT based on the coarse model. Its optimization is performed. The simulation results from the model are compared with the measurement results. It is shown that the simulation results obtained from the ANN model of A1GaN/GaN HEMT are more accurate than those obtained from the EEHEMT model.展开更多
To predict the tensile capacity of adhesive anchors, a multilayered feed-forward neural network trained with the back-propagation algorithm is constructed. The ANN model have 5 inputs, including the compressive streng...To predict the tensile capacity of adhesive anchors, a multilayered feed-forward neural network trained with the back-propagation algorithm is constructed. The ANN model have 5 inputs, including the compressive strength of concrete, tensile strength of concrete, anchor diameter, hole diameter, embedment of anchors, and ultimate load. The predictions obtained from the trained ANN show a good agreement with the experiments. Meanwhile, the predicted ultimate tensile capacity of anchors is close to the one calculated from the strength formula of the combined cone-bond failure model.展开更多
Artificial neural network models are a popular estimation tool for fitting nonlinear relationships because they require no assumptions about the form of the fitting function,non-Gaussian distributions,multicollinearit...Artificial neural network models are a popular estimation tool for fitting nonlinear relationships because they require no assumptions about the form of the fitting function,non-Gaussian distributions,multicollinearity,outliers and noise in the data.The problems of backpropagation models using artificial neural networks include determination of the structure of the network and overlearning courses.According to data from 1981 to 2008 from 15 permanent sample plots on Dagangshan Mountain in Jiangxi Province,a back-propagation artificial neural network model(BPANN)and a support vector machine model(SVM)for basal area of Chinese fir(Cunninghamia lanceolata)plantations were constructed using four kinds of prediction factors,including stand age,site index,surviving stem numbers and quadratic mean diameters.Artificial intelligence methods,especially SVM,could be effective in describing stand basal area growth of Chinese fir under different growth conditions with higher simulation precision than traditional regression models.SVM and the Chapman–Richards nonlinear mixed-effects model had less systematic bias than the BPANN.展开更多
This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in boa...This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in board allocating of furniture production. In the experiment, the rectangular flake board of 3650 mm 1850 mm was used as raw material to allocate 100 sets of Table Bucked. The utilizing rate of the board reached 94.14 % and the calculating time was only 35 s. The experiment result proofed that the method by using the GA for optimizing the weights of the ANN can raise the utilizing rate of the board and can shorten the time of the design. At the same time, this method can simultaneously searched in many directions, thus greatly in-creasing the probability of finding a global optimum.展开更多
Horizontal alignment greatly affects the speedof vehicles at rural roads. Therefore, it is necessary toanalyze and predict vehicles speed on curve sections.Numerous studies took rural two-lane as research subjectsand ...Horizontal alignment greatly affects the speedof vehicles at rural roads. Therefore, it is necessary toanalyze and predict vehicles speed on curve sections.Numerous studies took rural two-lane as research subjectsand provided models for predicting operating speeds.However, less attention has been paid to multi-lane highwaysespecially in Egypt. In this research, field operatingspeed data of both cars and trucks on 78 curve sections offour multi-lane highways is collected. With the data, correlationbetween operating speed (V85) and alignment isanalyzed. The paper includes two separate relevant analyses.The first analysis uses the regression models toinvestigate the relationships between V85 as dependentvariable, and horizontal alignment and roadway factors asindependent variables. This analysis proposes two predictingmodels for cars and trucks. The second analysisuses the artificial neural networks (ANNs) to explore theprevious relationships. It is found that the ANN modelinggives the best prediction model. The most influential variableon V85 for cars is the radius of curve. Also, for V85 fortrucks, the most influential variable is the median width.Finally, the derived models have statistics within theacceptable regions and they are conceptually reasonable.展开更多
Rate of penetration of a Tunnel Boring Machine(TBM) in a rock environment is generally a key parameter for the successful accomplishment of a tunneling project.This paper presents the results of a study into the appli...Rate of penetration of a Tunnel Boring Machine(TBM) in a rock environment is generally a key parameter for the successful accomplishment of a tunneling project.This paper presents the results of a study into the application of an Artificial Neural Network(ANN) technique for modeling the penetration rate of tunnel boring machines.A database,including actual,measured TBM penetration rates,uniaxial compressive strengths of the rock,the distance between planes of weakness in the rock mass and rock quality designation was established.Data collected from three different TBM projects(the Queens Water Tunnel,USA,the Karaj-Tehran water transfer tunnel,Iran,and the Gilgel Gibe II hydroelectric project,Ethiopia).A five-layer ANN was found to be optimum,with an architecture of three neurons in the input layer,9,7 and 3 neurons in the first,second and third hidden layers,respectively,and one neuron in the output layer.The correlation coefficient determined for penetration rate predicted by the ANN was 0.94.展开更多
To ensure the safety and stability of power grids with photovoltaic(PV)gen eration integrati on,it is necessary to predict the output perform a nee of PV modules un der varyi ng operating con ditions.In this paper,an ...To ensure the safety and stability of power grids with photovoltaic(PV)gen eration integrati on,it is necessary to predict the output perform a nee of PV modules un der varyi ng operating con ditions.In this paper,an improved artificial neural network(ANN)method is proposed to predict the electrical characteristics of a PV module by combining several neural networks under different environmental conditions.To study the dependenee of the output performance on the solar irradianee and temperature,the proposed neural network model is composed of four neural networks,it called multineural network(MANN).Each neural network consists of three layers,in which the input is solar radiation,and the module temperature and output are five physical parameters of the single diode model.The experimental data were divided into four groups and used for training the neural networks.The electrical properties of PV modules,including l-V curves,PV curves,and normalized root mean square error,were obtained and discussed.The effectiveness and accuracy of this method is verified by the experimental data for d iff ere nt types of PV modules.Compared with the traditional single-ANN(SANN)method,the proposed method shows be社er accuracy under different operating conditions.展开更多
Fluidization of non-spherical particles is very common in petroleum engineering.Understanding the complex phenomenon of non-spherical particle flow is of great significance.In this paper,coupled with two-fluid model,t...Fluidization of non-spherical particles is very common in petroleum engineering.Understanding the complex phenomenon of non-spherical particle flow is of great significance.In this paper,coupled with two-fluid model,the drag coefficient correlation based on artificial neural network was applied in the simulations of a bubbling fluidized bed filled with non-spherical particles.The simulation results were compared with the experimental data from the literature.Good agreement between the experimental data and the simulation results reveals that the modified drag model can accurately capture the interaction between the gas phase and solid phase.Then,several cases of different particles,including tetrahedron,cube,and sphere,together with the nylon beads used in the model validation,were employed in the simulations to study the effect of particle shape on the flow behaviors in the bubbling fluidized bed.Particle shape affects the hydrodynamics of non-spherical particles mainly on microscale.This work can be a basis and reference for the utilization of artificial neural network in the investigation of drag coefficient correlation in the dense gas-solid two-phase flow.Moreover,the proposed drag coefficient correlation provides one more option when investigating the hydrodynamics of non-spherical particles in the gas-solid fluidized bed.展开更多
With the rapid advancement of machine learning technology and its growing adoption in research and engineering applications,an increasing number of studies have embraced data-driven approaches for modeling wind turbin...With the rapid advancement of machine learning technology and its growing adoption in research and engineering applications,an increasing number of studies have embraced data-driven approaches for modeling wind turbine wakes.These models leverage the ability to capture complex,high-dimensional characteristics of wind turbine wakes while offering significantly greater efficiency in the prediction process than physics-driven models.As a result,data-driven wind turbine wake models are regarded as powerful and effective tools for predicting wake behavior and turbine power output.This paper aims to provide a concise yet comprehensive review of existing studies on wind turbine wake modeling that employ data-driven approaches.It begins by defining and classifying machine learning methods to facilitate a clearer understanding of the reviewed literature.Subsequently,the related studies are categorized into four key areas:wind turbine power prediction,data-driven analytic wake models,wake field reconstruction,and the incorporation of explicit physical constraints.The accuracy of data-driven models is influenced by two primary factors:the quality of the training data and the performance of the model itself.Accordingly,both data accuracy and model structure are discussed in detail within the review.展开更多
Damage assessment of the wing under blast wave is essential to the vulnerability reduction design of aircraft. This paper introduces a critical relative distance prediction method of aircraft wing damage based on the ...Damage assessment of the wing under blast wave is essential to the vulnerability reduction design of aircraft. This paper introduces a critical relative distance prediction method of aircraft wing damage based on the back-propagation artificial neural network(BP-ANN), which is trained by finite element simulation results. Moreover, the finite element method(FEM) for wing blast damage simulation has been validated by ground explosion tests and further used for damage mode determination and damage characteristics analysis. The analysis results indicate that the wing is more likely to be damaged when the root is struck from vertical directions than others for a small charge. With the increase of TNT equivalent charge, the main damage mode of the wing gradually changes from the local skin tearing to overall structural deformation and the overpressure threshold of wing damage decreases rapidly. Compared to the FEM-based damage assessment, the BP-ANN-based method can predict the wing damage under a random blast wave with an average relative error of 4.78%. The proposed method and conclusions can be used as a reference for damage assessment under blast wave and low-vulnerability design of aircraft structures.展开更多
Temporal land use/land cover (LULC) change information provides a variety of applications for informed management of land resources. The aim of this study was to detect and predict LULC changes in the Arasbaran region...Temporal land use/land cover (LULC) change information provides a variety of applications for informed management of land resources. The aim of this study was to detect and predict LULC changes in the Arasbaran region using an integrated Multi-Layer Perceptron Neural Network and Markov Chain analysis. At the first step, multi-temporal Landsat images (1990, 2002 and 2014) were processed using ancillary data and were classified into seven LULC categories of high density forest, low-density forest, agriculture, grassland, barren land, water and urban area. Next, LULC changes were detected for three time profiles, 1990–2002, 2002–2014 and 1990–2014. A 2014 LULC map of the study area was further simulated (for model performance evaluation) applying 1990 and 2002 map layers. In addition, a collection of spatial variables was also used for modeling LULC change processes as driving forces. The actual and simulated 2014 LULC change maps were cross-tabulated and compared to ensure model simulation success and the results indicated an overall accuracy and kappa coefficient of 97.79% and 0.992, respectively. Having the model properly validated, LULC change was predicted up to the year 2025. The results demonstrated that 992 and 1592 ha of high and lowdensity forests were degraded during 1990–2014,respectively, while 422 ha were added to the extent of residential areas with a growth rate of 17.58 ha per year. The developed model predicted a considerable degradation trend for the forest categories through 2025, accounting for 489 and 531 ha of loss for high and low-density forests, respectively. By way of contrast, residential area and farmland categories will increase up to 211 and 427 ha, respectively. The integrated prediction model and customary area data can be used for practical management efforts by simulating vegetation dynamics and future LULC change trajectories.展开更多
An artificial neural network(ANN) constitutive model is developed for high strength armor steel tempered at 500 C, 600 C and 650 C based on high strain rate data generated from split Hopkinson pressure bar(SHPB) exper...An artificial neural network(ANN) constitutive model is developed for high strength armor steel tempered at 500 C, 600 C and 650 C based on high strain rate data generated from split Hopkinson pressure bar(SHPB) experiments. A new neural network configuration consisting of both training and validation is effectively employed to predict flow stress. Tempering temperature, strain rate and strain are considered as inputs, whereas flow stress is taken as output of the neural network. A comparative study on Johnsone Cook(Je C) model and neural network model is performed. It was observed that the developed neural network model could predict flow stress under various strain rates and tempering temperatures. The experimental stressestrain data obtained from high strain rate compression tests using SHPB, over a range of tempering temperatures(500e650 C), strains(0.05e0.2) and strain rates(1000e5500/s) are employed to formulate Je C model to predict the high strain rate deformation behavior of high strength armor steels. The J-C model and the back-propagation ANN model were developed to predict the high strain rate deformation behavior of high strength armor steel and their predictability is evaluated in terms of correlation coefficient(R) and average absolute relative error(AARE). R and AARE for the Je C model are found to be 0.7461 and 27.624%, respectively, while R and AARE for the ANN model are 0.9995 and 2.58%, respectively. It was observed that the predictions by ANN model are in consistence with the experimental data for all tempering temperatures.展开更多
Aim To propose a modelling method for flexible manipulators. Methods The improved algorithm and structure of the ANN (artificial neural networks) were used. All of the data used in the process of modelling came from e...Aim To propose a modelling method for flexible manipulators. Methods The improved algorithm and structure of the ANN (artificial neural networks) were used. All of the data used in the process of modelling came from experiments based on a very flexible link which was fixed on a FANUC Robot S-Model 300 in our lab.Results and Conclusion The theoretical analysis and experiment results showed that this modelling scheme is more suitable for flexible systems with characteristics of fast changing dynamics, and also it can be more accurate than others and is more convenient for real-time use.展开更多
基金supported by the Fundamental Research Funds for the Central Universities (No.3122020072)the Multi-investment Project of Tianjin Applied Basic Research(No.23JCQNJC00250)。
文摘A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductivity and effective absorption coefficient of semitransparent materials.For the direct model,the spherical harmonic method and the finite volume method are used to solve the coupled conduction-radiation heat transfer problem in an absorbing,emitting,and non-scattering 2D axisymmetric gray medium in the background of laser flash method.For the identification part,firstly,the temperature field and the incident radiation field in different positions are chosen as observables.Then,a traditional identification model based on PSO algorithm is established.Finally,multilayer ANNs are built to fit and replace the direct model in the traditional identification model to speed up the identification process.The results show that compared with the traditional identification model,the time cost of the hybrid identification model is reduced by about 1 000 times.Besides,the hybrid identification model remains a high level of accuracy even with measurement errors.
基金Funded by the Natural Science Foundation of China (No. 59778021)
文摘An effective approach for describing complicated water quality processes is very important for river water quality management. We built two artificial neural network(ANN) models,a feed-forward back-propagation(BP) model and a radial basis function(RBF) model,to simulate the water quality of the Yangtze and Jialing Rivers in reaches crossing the city of Chongqing,P. R. China. Our models used the historical monitoring data of biological oxygen demand,dissolved oxygen,ammonia,oil and volatile phenolic compounds. Comparison with the one-dimensional traditional water quality model suggest that both BP and RBF models are superior; their higher accuracy and better goodness-of-fit indicate that the ANN calculation of water quality agrees better with measurement. It is demonstrated that ANN modeling can be a tool for estimating the water quality of the Yangtze River. Of the two ANN models,the RBF model calculates with a smaller mean error,but a larger root mean square error. More effort to identify out the causes of these differences would help optimize the structures of neural network water-quality models.
基金Funding from The Scientific and Technological Research Council of Turkey(Project No:2130026)is gratefully acknowledged
文摘Background: Leaf Area Index(LAI) is an important parameter used in monitoring and modeling of forest ecosystems. The aim of this study was to evaluate performance of the artificial neural network(ANN) models to predict the LAI by comparing the regression analysis models as the classical method in these pure and even-aged Crimean pine forest stands.Methods: One hundred eight temporary sample plots were collected from Crimean pine forest stands to estimate stand parameters. Each sample plot was imaged with hemispherical photographs to detect the LAI. The partial correlation analysis was used to assess the relationships between the stand LAI values and stand parameters, and the multivariate linear regression analysis was used to predict the LAI from stand parameters. Different artificial neural network models comprising different number of neuron and transfer functions were trained and used to predict the LAI of forest stands.Results: The correlation coefficients between LAI and stand parameters(stand number of trees, basal area, the quadratic mean diameter, stand density and stand age) were significant at the level of 0.01. The stand age, number of trees, site index, and basal area were independent parameters in the most successful regression model predicted LAI values using stand parameters(R_(adj)~2=0.5431). As corresponding method to predict the interactions between the stand LAI values and stand parameters, the neural network architecture based on the RBF 4-19-1 with Gaussian activation function in hidden layer and the identity activation function in output layer performed better in predicting LAI(SSE(12.1040), MSE(0.1223), RMSE(0.3497), AIC(0.1040), BIC(-77.7310) and R^2(0.6392)) compared to the other studied techniques.Conclusion: The ANN outperformed the multivariate regression techniques in predicting LAI from stand parameters. The ANN models, developed in this study, may aid in making forest management planning in study forest stands.
文摘In recent times, membranes have found wide applications in gas separation processes. As most of the industrial membrane separation units use hollow fiber modules, having a proper model for simulating this type of membrane module is very useful in achieving guidelines for design and characterization of membrane separation units. In this study, a model based on Coker, Freeman, and Fleming's study was used for estimating the required membrane area. This model could simulate a multicomponent gas mixture separation by solving the governing differential mass balance equations with numerical methods. Results of the model were validated using some binary and multicomponent experimental data from the literature. Also, the artificial neural network (ANN) technique was applied to predict membrane gas separation behavior and the results of the ANN simulation were compared with the simulation results of the model and the experimental data. Good consistency between these results shows that ANN method can be successfully used for prediction of the separation behavior after suitable training of the network
基金the management of Sierra Rutile Company for providing the drillhole dataset used in this studythe Japanese Ministry of Education Science and Technology (MEXT) Scholarship for academic funding
文摘In this research, a method called ANNMG is presented to integrate Artificial Neural Networks and Geostatistics for optimum mineral reserve evaluation. The word ANNMG simply means Artificial Neural Network Model integrated with Geostatiscs, In this procedure, the Artificial Neural Network was trained, tested and validated using assay values obtained from exploratory drillholes. Next, the validated model was used to generalize mineral grades at known and unknown sampled locations inside the drilling region respectively. Finally, the reproduced and generalized assay values were combined and fed to geostatistics in order to develop a geological 3D block model. The regression analysis revealed that the predicted sample grades were in close proximity to the actual sample grades, The generalized grades from the ANNMG show that this process could be used to complement exploration activities thereby reducing drilling requirement. It could also be an effective mineral reserve evaluation method that could oroduce optimum block model for mine design.
文摘An artificial neural network (ANN) model is established to predict plastic flow behaviors of the 603 armor steel, based on experiments over wide ranges of strain rates (0. 001 -4 500 s -1 ) and temperatures (288 -873 K). The descriptive and predictive capabilities of the ANN model are com- pared with several phenomenological and physically based constitutive models. The ANN model has a much better applicability than the other models in characterization of the flow stress. The tempera- ture and the strain rate effects on the flow stress can be described successfully by the ANN model, with an average error of 1.78% for both quasi-static and dynamic loading conditions. Besides its high accuracy in prediction of the strain rate jump tests, the ANN model is more convenient in model es- tablishment and data processing. The ANN model developed in this study may serve as a valid and ef- fective tool to predict plastic behaviors of the 603 steel under complex loading conditions.
基金the National Natural Science Foundation(60278022)
文摘A method of the forward operation of color appearance (from colorimetric attributes to color appearance attributes) using an artificial neural network (ANN) is presented The neural network model developed is a multilayer feedforward neural network model for predicting color appearance model (CAM). This method greatly decreased the mathematical computation in color appearance prediction. The error backed-propagation (BP) algorithm was applied in the training of the neural networks, and it was trained and tested by the LUTCHI color appearance datasets which are the most comprehensive one in testing color appearance model. CRT was selected as a typical example in experiment because it is usually used as self-luminous object in fact, and several ways for choosing training samples were included and compared each other. The testing results show that the color appearance prediction using artificial neural network is well consistent with visual evaluation.
基金supported by the National Natural Science Foundation of China (Grant No. 60776052)
文摘In this paper we present a novel approach to modeling AlGaN/GaN high electron mobility transistor (HEMT) with an artificial neural network (ANN). The AlGaN/GaN HEMT device structure and its fabrication process are described. The circuit-based Neuro-space mapping (neuro-SM) technique is studied in detail. The EEHEMT model is implemented according to the measurement results of the designed device, which serves as a coarse model. An ANN is proposed to model AIGaN/CaN HEMT based on the coarse model. Its optimization is performed. The simulation results from the model are compared with the measurement results. It is shown that the simulation results obtained from the ANN model of A1GaN/GaN HEMT are more accurate than those obtained from the EEHEMT model.
基金The National Natural Science Foundationof China (No50578025)
文摘To predict the tensile capacity of adhesive anchors, a multilayered feed-forward neural network trained with the back-propagation algorithm is constructed. The ANN model have 5 inputs, including the compressive strength of concrete, tensile strength of concrete, anchor diameter, hole diameter, embedment of anchors, and ultimate load. The predictions obtained from the trained ANN show a good agreement with the experiments. Meanwhile, the predicted ultimate tensile capacity of anchors is close to the one calculated from the strength formula of the combined cone-bond failure model.
基金supported by the National Scientific and Technological Task in China(Nos.2015BAD09B0101,2016YFD0600302)National Natural Science Foundation of China(No.31570619)the Special Science and Technology Innovation in Jiangxi Province(No.201702)
文摘Artificial neural network models are a popular estimation tool for fitting nonlinear relationships because they require no assumptions about the form of the fitting function,non-Gaussian distributions,multicollinearity,outliers and noise in the data.The problems of backpropagation models using artificial neural networks include determination of the structure of the network and overlearning courses.According to data from 1981 to 2008 from 15 permanent sample plots on Dagangshan Mountain in Jiangxi Province,a back-propagation artificial neural network model(BPANN)and a support vector machine model(SVM)for basal area of Chinese fir(Cunninghamia lanceolata)plantations were constructed using four kinds of prediction factors,including stand age,site index,surviving stem numbers and quadratic mean diameters.Artificial intelligence methods,especially SVM,could be effective in describing stand basal area growth of Chinese fir under different growth conditions with higher simulation precision than traditional regression models.SVM and the Chapman–Richards nonlinear mixed-effects model had less systematic bias than the BPANN.
基金This paper is supported by the Nature Science Foundation of Heilongjiang Province.
文摘This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in board allocating of furniture production. In the experiment, the rectangular flake board of 3650 mm 1850 mm was used as raw material to allocate 100 sets of Table Bucked. The utilizing rate of the board reached 94.14 % and the calculating time was only 35 s. The experiment result proofed that the method by using the GA for optimizing the weights of the ANN can raise the utilizing rate of the board and can shorten the time of the design. At the same time, this method can simultaneously searched in many directions, thus greatly in-creasing the probability of finding a global optimum.
文摘Horizontal alignment greatly affects the speedof vehicles at rural roads. Therefore, it is necessary toanalyze and predict vehicles speed on curve sections.Numerous studies took rural two-lane as research subjectsand provided models for predicting operating speeds.However, less attention has been paid to multi-lane highwaysespecially in Egypt. In this research, field operatingspeed data of both cars and trucks on 78 curve sections offour multi-lane highways is collected. With the data, correlationbetween operating speed (V85) and alignment isanalyzed. The paper includes two separate relevant analyses.The first analysis uses the regression models toinvestigate the relationships between V85 as dependentvariable, and horizontal alignment and roadway factors asindependent variables. This analysis proposes two predictingmodels for cars and trucks. The second analysisuses the artificial neural networks (ANNs) to explore theprevious relationships. It is found that the ANN modelinggives the best prediction model. The most influential variableon V85 for cars is the radius of curve. Also, for V85 fortrucks, the most influential variable is the median width.Finally, the derived models have statistics within theacceptable regions and they are conceptually reasonable.
文摘Rate of penetration of a Tunnel Boring Machine(TBM) in a rock environment is generally a key parameter for the successful accomplishment of a tunneling project.This paper presents the results of a study into the application of an Artificial Neural Network(ANN) technique for modeling the penetration rate of tunnel boring machines.A database,including actual,measured TBM penetration rates,uniaxial compressive strengths of the rock,the distance between planes of weakness in the rock mass and rock quality designation was established.Data collected from three different TBM projects(the Queens Water Tunnel,USA,the Karaj-Tehran water transfer tunnel,Iran,and the Gilgel Gibe II hydroelectric project,Ethiopia).A five-layer ANN was found to be optimum,with an architecture of three neurons in the input layer,9,7 and 3 neurons in the first,second and third hidden layers,respectively,and one neuron in the output layer.The correlation coefficient determined for penetration rate predicted by the ANN was 0.94.
基金the National Key Research and Development Program of China(Grant No.2018YFB0904200).
文摘To ensure the safety and stability of power grids with photovoltaic(PV)gen eration integrati on,it is necessary to predict the output perform a nee of PV modules un der varyi ng operating con ditions.In this paper,an improved artificial neural network(ANN)method is proposed to predict the electrical characteristics of a PV module by combining several neural networks under different environmental conditions.To study the dependenee of the output performance on the solar irradianee and temperature,the proposed neural network model is composed of four neural networks,it called multineural network(MANN).Each neural network consists of three layers,in which the input is solar radiation,and the module temperature and output are five physical parameters of the single diode model.The experimental data were divided into four groups and used for training the neural networks.The electrical properties of PV modules,including l-V curves,PV curves,and normalized root mean square error,were obtained and discussed.The effectiveness and accuracy of this method is verified by the experimental data for d iff ere nt types of PV modules.Compared with the traditional single-ANN(SANN)method,the proposed method shows be社er accuracy under different operating conditions.
基金the financial support by the National Natural Science Foundation of China(Grant No.51706055).
文摘Fluidization of non-spherical particles is very common in petroleum engineering.Understanding the complex phenomenon of non-spherical particle flow is of great significance.In this paper,coupled with two-fluid model,the drag coefficient correlation based on artificial neural network was applied in the simulations of a bubbling fluidized bed filled with non-spherical particles.The simulation results were compared with the experimental data from the literature.Good agreement between the experimental data and the simulation results reveals that the modified drag model can accurately capture the interaction between the gas phase and solid phase.Then,several cases of different particles,including tetrahedron,cube,and sphere,together with the nylon beads used in the model validation,were employed in the simulations to study the effect of particle shape on the flow behaviors in the bubbling fluidized bed.Particle shape affects the hydrodynamics of non-spherical particles mainly on microscale.This work can be a basis and reference for the utilization of artificial neural network in the investigation of drag coefficient correlation in the dense gas-solid two-phase flow.Moreover,the proposed drag coefficient correlation provides one more option when investigating the hydrodynamics of non-spherical particles in the gas-solid fluidized bed.
基金Supported by the National Natural Science Foundation of China under Grant No.52131102.
文摘With the rapid advancement of machine learning technology and its growing adoption in research and engineering applications,an increasing number of studies have embraced data-driven approaches for modeling wind turbine wakes.These models leverage the ability to capture complex,high-dimensional characteristics of wind turbine wakes while offering significantly greater efficiency in the prediction process than physics-driven models.As a result,data-driven wind turbine wake models are regarded as powerful and effective tools for predicting wake behavior and turbine power output.This paper aims to provide a concise yet comprehensive review of existing studies on wind turbine wake modeling that employ data-driven approaches.It begins by defining and classifying machine learning methods to facilitate a clearer understanding of the reviewed literature.Subsequently,the related studies are categorized into four key areas:wind turbine power prediction,data-driven analytic wake models,wake field reconstruction,and the incorporation of explicit physical constraints.The accuracy of data-driven models is influenced by two primary factors:the quality of the training data and the performance of the model itself.Accordingly,both data accuracy and model structure are discussed in detail within the review.
基金supported by the Natural Science Foundation of Shaanxi Province (Grant No. 2020JQ-122)the Fund support of Science and Technology on Transient Impact Laboratory。
文摘Damage assessment of the wing under blast wave is essential to the vulnerability reduction design of aircraft. This paper introduces a critical relative distance prediction method of aircraft wing damage based on the back-propagation artificial neural network(BP-ANN), which is trained by finite element simulation results. Moreover, the finite element method(FEM) for wing blast damage simulation has been validated by ground explosion tests and further used for damage mode determination and damage characteristics analysis. The analysis results indicate that the wing is more likely to be damaged when the root is struck from vertical directions than others for a small charge. With the increase of TNT equivalent charge, the main damage mode of the wing gradually changes from the local skin tearing to overall structural deformation and the overpressure threshold of wing damage decreases rapidly. Compared to the FEM-based damage assessment, the BP-ANN-based method can predict the wing damage under a random blast wave with an average relative error of 4.78%. The proposed method and conclusions can be used as a reference for damage assessment under blast wave and low-vulnerability design of aircraft structures.
文摘Temporal land use/land cover (LULC) change information provides a variety of applications for informed management of land resources. The aim of this study was to detect and predict LULC changes in the Arasbaran region using an integrated Multi-Layer Perceptron Neural Network and Markov Chain analysis. At the first step, multi-temporal Landsat images (1990, 2002 and 2014) were processed using ancillary data and were classified into seven LULC categories of high density forest, low-density forest, agriculture, grassland, barren land, water and urban area. Next, LULC changes were detected for three time profiles, 1990–2002, 2002–2014 and 1990–2014. A 2014 LULC map of the study area was further simulated (for model performance evaluation) applying 1990 and 2002 map layers. In addition, a collection of spatial variables was also used for modeling LULC change processes as driving forces. The actual and simulated 2014 LULC change maps were cross-tabulated and compared to ensure model simulation success and the results indicated an overall accuracy and kappa coefficient of 97.79% and 0.992, respectively. Having the model properly validated, LULC change was predicted up to the year 2025. The results demonstrated that 992 and 1592 ha of high and lowdensity forests were degraded during 1990–2014,respectively, while 422 ha were added to the extent of residential areas with a growth rate of 17.58 ha per year. The developed model predicted a considerable degradation trend for the forest categories through 2025, accounting for 489 and 531 ha of loss for high and low-density forests, respectively. By way of contrast, residential area and farmland categories will increase up to 211 and 427 ha, respectively. The integrated prediction model and customary area data can be used for practical management efforts by simulating vegetation dynamics and future LULC change trajectories.
文摘An artificial neural network(ANN) constitutive model is developed for high strength armor steel tempered at 500 C, 600 C and 650 C based on high strain rate data generated from split Hopkinson pressure bar(SHPB) experiments. A new neural network configuration consisting of both training and validation is effectively employed to predict flow stress. Tempering temperature, strain rate and strain are considered as inputs, whereas flow stress is taken as output of the neural network. A comparative study on Johnsone Cook(Je C) model and neural network model is performed. It was observed that the developed neural network model could predict flow stress under various strain rates and tempering temperatures. The experimental stressestrain data obtained from high strain rate compression tests using SHPB, over a range of tempering temperatures(500e650 C), strains(0.05e0.2) and strain rates(1000e5500/s) are employed to formulate Je C model to predict the high strain rate deformation behavior of high strength armor steels. The J-C model and the back-propagation ANN model were developed to predict the high strain rate deformation behavior of high strength armor steel and their predictability is evaluated in terms of correlation coefficient(R) and average absolute relative error(AARE). R and AARE for the Je C model are found to be 0.7461 and 27.624%, respectively, while R and AARE for the ANN model are 0.9995 and 2.58%, respectively. It was observed that the predictions by ANN model are in consistence with the experimental data for all tempering temperatures.
文摘Aim To propose a modelling method for flexible manipulators. Methods The improved algorithm and structure of the ANN (artificial neural networks) were used. All of the data used in the process of modelling came from experiments based on a very flexible link which was fixed on a FANUC Robot S-Model 300 in our lab.Results and Conclusion The theoretical analysis and experiment results showed that this modelling scheme is more suitable for flexible systems with characteristics of fast changing dynamics, and also it can be more accurate than others and is more convenient for real-time use.