The effects of cyanidation conditions on gold dissolution were studied by artificial neural network (ANN) modeling. Eighty-five datasets were used to estimate the gold dissolution. Six input parameters, time, solid ...The effects of cyanidation conditions on gold dissolution were studied by artificial neural network (ANN) modeling. Eighty-five datasets were used to estimate the gold dissolution. Six input parameters, time, solid percentage, P50 of particle, NaCN content in cyanide media, temperature of solution and pH value were used. For selecting the best model, the outputs of models were compared with measured data. A fourth-layer ANN is found to be optimum with architecture of twenty, fifteen, ten and five neurons in the first, second, third and fourth hidden layers, respectively, and one neuron in output layer. The results of artificial neural network show that the square correlation coefficients (R2) of training, testing and validating data achieve 0.999 1, 0.996 4 and 0.9981, respectively. Sensitivity analysis shows that the highest and lowest effects on the gold dissolution rise from time and pH, respectively It is verified that the predicted values of ANN coincide well with the experimental results.展开更多
Sonic log is the most versatile reservoir evaluation tool that has been introduced to the industry. Compaction,erosion and over pressurized zone can be evaluated by sonic log.Also primary porosity can be determined fr...Sonic log is the most versatile reservoir evaluation tool that has been introduced to the industry. Compaction,erosion and over pressurized zone can be evaluated by sonic log.Also primary porosity can be determined from compressional sonic wave transit time and secondary porosity will be calculated by comparing sonic derived porosity log with neutron and density based porosity log.On the other hand all of the rock mechanical properties can be evaluated using simultaneous use of compressional and shear sonic wave transit time.It is essential to have展开更多
Now, a rapidly growing concern for the environmental protection and resource utilization has stimulated many new activities in the in dustrialized world for coping with urgent environmental problems created by the ste...Now, a rapidly growing concern for the environmental protection and resource utilization has stimulated many new activities in the in dustrialized world for coping with urgent environmental problems created by the steadily increasing consumption of industrial products. Increasingly stringent r egulations and widely expressed public concern for the environment highlight the importance of disposing solid waste generated from industrial and consumable pr oducts. How to efficiently recycle and tackle this problem has been a very impo rtant issue over the world. Designing products for recyclability is driven by environmental and economic goals. To obtain good recyclability, two measures can be adopted. One is better recycling strategy and technology; the other is design for recycling (DFR). The recycling strategies of products generally inclu de: reuse, service, remanufacturing, recycling of production scraps during the p roduct usage, recycle (separation first) and disposal. Recyclability assessment is a very important content in DFR. This paper first discusses the content of D FR and strategies and types related to products recyclability, and points out th at easy or difficult recyclability depends on the design phase. Then method and procedure of recyclability assessment based on ANN is explored in detail. The pr ocess consists of selection of the ANN input and output parameters, control of t he sample quality and construction and training of the neural network. At la st, the case study shows this method is simple and operative.展开更多
On the basis of Artificial Neural Network theory, a back propagation neural network with one middle layer is building in this paper, and its algorithms is also given, Using this BP network model, study the case of Mal...On the basis of Artificial Neural Network theory, a back propagation neural network with one middle layer is building in this paper, and its algorithms is also given, Using this BP network model, study the case of Malian-River basin. The results by calculating show that the solution based on BP algorithms are consis- tent with those based multiple - variables linear regression model. They also indicate that BP model in this paper is reasonable and BP algorithms are feasible.展开更多
The present study proposed an enhanced cuckoo search(ECS) algorithm combined with artificial neural network(ANN) as the surrogate model to solve structural reliability problems. In order to enhance the accuracy and co...The present study proposed an enhanced cuckoo search(ECS) algorithm combined with artificial neural network(ANN) as the surrogate model to solve structural reliability problems. In order to enhance the accuracy and convergence rate of the original cuckoo search(CS) algorithm, the main parameters namely, abandon probability of worst nests paand search step sizeα0 are dynamically adjusted via nonlinear control equations. In addition, a global-best guided equation incorporating the information of global best nest is introduced to the ECS to enhance its exploitation. Then, the proposed ECS is linked to the well-trained ANN model for structural reliability analysis. The computational capability of the proposed algorithm is validated using five typical structural reliability problems and an engineering application. The comparison results show the efficiency and accuracy of the proposed algorithm.展开更多
Vertical hot ring rolling(VHRR) process has the characteristics of nonlinearity,time-variation and being susceptible to disturbance.Furthermore,the ring's growth is quite fast within a short time,and the rolled ri...Vertical hot ring rolling(VHRR) process has the characteristics of nonlinearity,time-variation and being susceptible to disturbance.Furthermore,the ring's growth is quite fast within a short time,and the rolled ring's position is asymmetrical.All of these cause that the ring's dimensions cannot be measured directly.Through analyzing the relationships among the dimensions of ring blanks,the positions of rolls and the ring's inner and outer diameter,the soft measurement model of ring's dimensions is established based on the radial basis function neural network(RBFNN).A mass of data samples are obtained from VHRR finite element(FE) simulations to train and test the soft measurement NN model,and the model's structure parameters are deduced and optimized by genetic algorithm(GA).Finally,the soft measurement system of ring's dimensions is established and validated by the VHRR experiments.The ring's dimensions were measured artificially and calculated by the soft measurement NN model.The results show that the calculation values of GA-RBFNN model are close to the artificial measurement data.In addition,the calculation accuracy of GA-RBFNN model is higher than that of RBFNN model.The research results suggest that the soft measurement NN model has high precision and flexibility.The research can provide practical methods and theoretical guidance for the accurate measurement of VHRR process.展开更多
Determination of ballistic performance of an armor solution is a complicated task and evolved significantly with the application of finite element methods(FEM) in this research field.The traditional armor design studi...Determination of ballistic performance of an armor solution is a complicated task and evolved significantly with the application of finite element methods(FEM) in this research field.The traditional armor design studies performed with FEM requires sophisticated procedures and intensive computational effort,therefore simpler and accurate numerical approaches are always worthwhile to decrease armor development time.This study aims to apply a hybrid method using FEM simulation and artificial neural network(ANN) analysis to approximate ballistic limit thickness for armor steels.To achieve this objective,a predictive model based on the artificial neural networks is developed to determine ballistic resistance of high hardness armor steels against 7.62 mm armor piercing ammunition.In this methodology,the FEM simulations are used to create training cases for Multilayer Perceptron(MLP) three layer networks.In order to validate FE simulation methodology,ballistic shot tests on 20 mm thickness target were performed according to standard Stanag 4569.Afterwards,the successfully trained ANN(s) is used to predict the ballistic limit thickness of 500 HB high hardness steel armor.Results show that even with limited number of data,FEM-ANN approach can be used to predict ballistic penetration depth with adequate accuracy.展开更多
An artificial neural network(ANN) constitutive model is developed for high strength armor steel tempered at 500 C, 600 C and 650 C based on high strain rate data generated from split Hopkinson pressure bar(SHPB) exper...An artificial neural network(ANN) constitutive model is developed for high strength armor steel tempered at 500 C, 600 C and 650 C based on high strain rate data generated from split Hopkinson pressure bar(SHPB) experiments. A new neural network configuration consisting of both training and validation is effectively employed to predict flow stress. Tempering temperature, strain rate and strain are considered as inputs, whereas flow stress is taken as output of the neural network. A comparative study on Johnsone Cook(Je C) model and neural network model is performed. It was observed that the developed neural network model could predict flow stress under various strain rates and tempering temperatures. The experimental stressestrain data obtained from high strain rate compression tests using SHPB, over a range of tempering temperatures(500e650 C), strains(0.05e0.2) and strain rates(1000e5500/s) are employed to formulate Je C model to predict the high strain rate deformation behavior of high strength armor steels. The J-C model and the back-propagation ANN model were developed to predict the high strain rate deformation behavior of high strength armor steel and their predictability is evaluated in terms of correlation coefficient(R) and average absolute relative error(AARE). R and AARE for the Je C model are found to be 0.7461 and 27.624%, respectively, while R and AARE for the ANN model are 0.9995 and 2.58%, respectively. It was observed that the predictions by ANN model are in consistence with the experimental data for all tempering temperatures.展开更多
In this paper, we first make a brief review on the fundamental properties of artificial neural networks (ANN) and the basic models, and explore emphatically some potential application of artificial neural networks in ...In this paper, we first make a brief review on the fundamental properties of artificial neural networks (ANN) and the basic models, and explore emphatically some potential application of artificial neural networks in the area of product quality diagnosis, prediction and control, state supervision and classification, factor recognition, and expert system based diagnosis, then set up the ANN models and expert system for quality forecasting, monitoring and diagnosing. We point out that combining ANN with other techniques will have the broad development and application of perspectives. Finally, the paper gives out some practical applications for the models and the system.展开更多
This paper pays its attention on Chinese mobile Internet service( MIS). Chinese MIS is developing so rapidly that the research on the mechanism of the formation of MIS assessment makes significant sense and therefore ...This paper pays its attention on Chinese mobile Internet service( MIS). Chinese MIS is developing so rapidly that the research on the mechanism of the formation of MIS assessment makes significant sense and therefore the three layers construct of the artificial neural network( ANN) theory is applied to address the problem. The final research model contains MIS features including personalization,localization,reachability,connectivity,convenience and ubiquity as the input layer variables,perceived MIS quality and MIS satisfaction as the hidden layer variables and reuse intention as the output layer variable. MIS risk is identified as the mediating variable. Theoretically,the framework is robust and reveals the mechanism of how customers evaluate a certain mobile Internet service. Practically,the model based on ANN should shed some light on how to understand and improve customer perceived mobile Internet service for both MIS giants and new comers.展开更多
Fiber reinforced polymers (FRPs), unlike steel, are corrosion-resistant and therefore are of interest;however, their use is hindered because their brittle shear is formulated in most specifications using limited data ...Fiber reinforced polymers (FRPs), unlike steel, are corrosion-resistant and therefore are of interest;however, their use is hindered because their brittle shear is formulated in most specifications using limited data available at the time. We aimed to predict the shear strength of concrete beams reinforced with FRP bars and without stirrups by compiling a relatively large database of 198 previously published test results (available in appendix). To model shear strength, an artificial neural network was trained by an ensemble of Levenberg-Marquardt and imperialist competitive algorithms. The results suggested superior accuracy of model compared to equations available in specifications and literature.展开更多
The local time dependence of the geomagnetic disturbances during magnetic storms indicates the necessity of forecasting the localized magnetic storm indices.For the first time,we construct prediction models for the Su...The local time dependence of the geomagnetic disturbances during magnetic storms indicates the necessity of forecasting the localized magnetic storm indices.For the first time,we construct prediction models for the SuperMAG partial ring current indices(SMR-LT),with the advance time increasing from 1 h to 12 h by Long Short-Term Memory(LSTM)neural network.Generally,the prediction performance decreases with the advance time and is better for the SMR-06 index than for the SMR-00,SMR-12,and SMR-18 index.For the predictions with 12 h ahead,the correlation coefficient is 0.738,0.608,0.665,and 0.613,respectively.To avoid the over-represented effect of massive data during geomagnetic quiet periods,only the data during magnetic storms are used to train and test our models,and the improvement in prediction metrics increases with the advance time.For example,for predicting the storm-time SMR-06 index with 12 h ahead,the correlation coefficient and the prediction efficiency increases from 0.674 to 0.691,and from 0.349 to 0.455,respectively.The evaluation of the model performance for forecasting the storm intensity shows that the relative error for intense storms is usually less than the relative error for moderate storms.展开更多
In this paper,a feature selection method for determining input parameters in antenna modeling is proposed.In antenna modeling,the input feature of artificial neural network(ANN)is geometric parameters.The selection cr...In this paper,a feature selection method for determining input parameters in antenna modeling is proposed.In antenna modeling,the input feature of artificial neural network(ANN)is geometric parameters.The selection criteria contain correlation and sensitivity between the geometric parameter and the electromagnetic(EM)response.Maximal information coefficient(MIC),an exploratory data mining tool,is introduced to evaluate both linear and nonlinear correlations.The EM response range is utilized to evaluate the sensitivity.The wide response range corresponding to varying values of a parameter implies the parameter is highly sensitive and the narrow response range suggests the parameter is insensitive.Only the parameter which is highly correlative and sensitive is selected as the input of ANN,and the sampling space of the model is highly reduced.The modeling of a wideband and circularly polarized antenna is studied as an example to verify the effectiveness of the proposed method.The number of input parameters decreases from8 to 4.The testing errors of|S_(11)|and axis ratio are reduced by8.74%and 8.95%,respectively,compared with the ANN with no feature selection.展开更多
文摘The effects of cyanidation conditions on gold dissolution were studied by artificial neural network (ANN) modeling. Eighty-five datasets were used to estimate the gold dissolution. Six input parameters, time, solid percentage, P50 of particle, NaCN content in cyanide media, temperature of solution and pH value were used. For selecting the best model, the outputs of models were compared with measured data. A fourth-layer ANN is found to be optimum with architecture of twenty, fifteen, ten and five neurons in the first, second, third and fourth hidden layers, respectively, and one neuron in output layer. The results of artificial neural network show that the square correlation coefficients (R2) of training, testing and validating data achieve 0.999 1, 0.996 4 and 0.9981, respectively. Sensitivity analysis shows that the highest and lowest effects on the gold dissolution rise from time and pH, respectively It is verified that the predicted values of ANN coincide well with the experimental results.
文摘Sonic log is the most versatile reservoir evaluation tool that has been introduced to the industry. Compaction,erosion and over pressurized zone can be evaluated by sonic log.Also primary porosity can be determined from compressional sonic wave transit time and secondary porosity will be calculated by comparing sonic derived porosity log with neutron and density based porosity log.On the other hand all of the rock mechanical properties can be evaluated using simultaneous use of compressional and shear sonic wave transit time.It is essential to have
文摘Now, a rapidly growing concern for the environmental protection and resource utilization has stimulated many new activities in the in dustrialized world for coping with urgent environmental problems created by the steadily increasing consumption of industrial products. Increasingly stringent r egulations and widely expressed public concern for the environment highlight the importance of disposing solid waste generated from industrial and consumable pr oducts. How to efficiently recycle and tackle this problem has been a very impo rtant issue over the world. Designing products for recyclability is driven by environmental and economic goals. To obtain good recyclability, two measures can be adopted. One is better recycling strategy and technology; the other is design for recycling (DFR). The recycling strategies of products generally inclu de: reuse, service, remanufacturing, recycling of production scraps during the p roduct usage, recycle (separation first) and disposal. Recyclability assessment is a very important content in DFR. This paper first discusses the content of D FR and strategies and types related to products recyclability, and points out th at easy or difficult recyclability depends on the design phase. Then method and procedure of recyclability assessment based on ANN is explored in detail. The pr ocess consists of selection of the ANN input and output parameters, control of t he sample quality and construction and training of the neural network. At la st, the case study shows this method is simple and operative.
基金Supported by Brilliant Youth Fund in Hebei Province
文摘On the basis of Artificial Neural Network theory, a back propagation neural network with one middle layer is building in this paper, and its algorithms is also given, Using this BP network model, study the case of Malian-River basin. The results by calculating show that the solution based on BP algorithms are consis- tent with those based multiple - variables linear regression model. They also indicate that BP model in this paper is reasonable and BP algorithms are feasible.
基金supported by the National Natural Science Foundation of China(51875465)
文摘The present study proposed an enhanced cuckoo search(ECS) algorithm combined with artificial neural network(ANN) as the surrogate model to solve structural reliability problems. In order to enhance the accuracy and convergence rate of the original cuckoo search(CS) algorithm, the main parameters namely, abandon probability of worst nests paand search step sizeα0 are dynamically adjusted via nonlinear control equations. In addition, a global-best guided equation incorporating the information of global best nest is introduced to the ECS to enhance its exploitation. Then, the proposed ECS is linked to the well-trained ANN model for structural reliability analysis. The computational capability of the proposed algorithm is validated using five typical structural reliability problems and an engineering application. The comparison results show the efficiency and accuracy of the proposed algorithm.
基金Project(51205299)supported by the National Natural Science Foundation of ChinaProject(2015M582643)supported by the China Postdoctoral Science Foundation+2 种基金Project(2014BAA008)supported by the Science and Technology Support Program of Hubei Province,ChinaProject(2014-IV-144)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(2012AAA07-01)supported by the Major Science and Technology Achievements Transformation&Industrialization Program of Hubei Province,China
文摘Vertical hot ring rolling(VHRR) process has the characteristics of nonlinearity,time-variation and being susceptible to disturbance.Furthermore,the ring's growth is quite fast within a short time,and the rolled ring's position is asymmetrical.All of these cause that the ring's dimensions cannot be measured directly.Through analyzing the relationships among the dimensions of ring blanks,the positions of rolls and the ring's inner and outer diameter,the soft measurement model of ring's dimensions is established based on the radial basis function neural network(RBFNN).A mass of data samples are obtained from VHRR finite element(FE) simulations to train and test the soft measurement NN model,and the model's structure parameters are deduced and optimized by genetic algorithm(GA).Finally,the soft measurement system of ring's dimensions is established and validated by the VHRR experiments.The ring's dimensions were measured artificially and calculated by the soft measurement NN model.The results show that the calculation values of GA-RBFNN model are close to the artificial measurement data.In addition,the calculation accuracy of GA-RBFNN model is higher than that of RBFNN model.The research results suggest that the soft measurement NN model has high precision and flexibility.The research can provide practical methods and theoretical guidance for the accurate measurement of VHRR process.
基金Otokar Otomotiv ve Savunma Sanayi A.S. for the financial support
文摘Determination of ballistic performance of an armor solution is a complicated task and evolved significantly with the application of finite element methods(FEM) in this research field.The traditional armor design studies performed with FEM requires sophisticated procedures and intensive computational effort,therefore simpler and accurate numerical approaches are always worthwhile to decrease armor development time.This study aims to apply a hybrid method using FEM simulation and artificial neural network(ANN) analysis to approximate ballistic limit thickness for armor steels.To achieve this objective,a predictive model based on the artificial neural networks is developed to determine ballistic resistance of high hardness armor steels against 7.62 mm armor piercing ammunition.In this methodology,the FEM simulations are used to create training cases for Multilayer Perceptron(MLP) three layer networks.In order to validate FE simulation methodology,ballistic shot tests on 20 mm thickness target were performed according to standard Stanag 4569.Afterwards,the successfully trained ANN(s) is used to predict the ballistic limit thickness of 500 HB high hardness steel armor.Results show that even with limited number of data,FEM-ANN approach can be used to predict ballistic penetration depth with adequate accuracy.
文摘An artificial neural network(ANN) constitutive model is developed for high strength armor steel tempered at 500 C, 600 C and 650 C based on high strain rate data generated from split Hopkinson pressure bar(SHPB) experiments. A new neural network configuration consisting of both training and validation is effectively employed to predict flow stress. Tempering temperature, strain rate and strain are considered as inputs, whereas flow stress is taken as output of the neural network. A comparative study on Johnsone Cook(Je C) model and neural network model is performed. It was observed that the developed neural network model could predict flow stress under various strain rates and tempering temperatures. The experimental stressestrain data obtained from high strain rate compression tests using SHPB, over a range of tempering temperatures(500e650 C), strains(0.05e0.2) and strain rates(1000e5500/s) are employed to formulate Je C model to predict the high strain rate deformation behavior of high strength armor steels. The J-C model and the back-propagation ANN model were developed to predict the high strain rate deformation behavior of high strength armor steel and their predictability is evaluated in terms of correlation coefficient(R) and average absolute relative error(AARE). R and AARE for the Je C model are found to be 0.7461 and 27.624%, respectively, while R and AARE for the ANN model are 0.9995 and 2.58%, respectively. It was observed that the predictions by ANN model are in consistence with the experimental data for all tempering temperatures.
文摘In this paper, we first make a brief review on the fundamental properties of artificial neural networks (ANN) and the basic models, and explore emphatically some potential application of artificial neural networks in the area of product quality diagnosis, prediction and control, state supervision and classification, factor recognition, and expert system based diagnosis, then set up the ANN models and expert system for quality forecasting, monitoring and diagnosing. We point out that combining ANN with other techniques will have the broad development and application of perspectives. Finally, the paper gives out some practical applications for the models and the system.
文摘This paper pays its attention on Chinese mobile Internet service( MIS). Chinese MIS is developing so rapidly that the research on the mechanism of the formation of MIS assessment makes significant sense and therefore the three layers construct of the artificial neural network( ANN) theory is applied to address the problem. The final research model contains MIS features including personalization,localization,reachability,connectivity,convenience and ubiquity as the input layer variables,perceived MIS quality and MIS satisfaction as the hidden layer variables and reuse intention as the output layer variable. MIS risk is identified as the mediating variable. Theoretically,the framework is robust and reveals the mechanism of how customers evaluate a certain mobile Internet service. Practically,the model based on ANN should shed some light on how to understand and improve customer perceived mobile Internet service for both MIS giants and new comers.
文摘Fiber reinforced polymers (FRPs), unlike steel, are corrosion-resistant and therefore are of interest;however, their use is hindered because their brittle shear is formulated in most specifications using limited data available at the time. We aimed to predict the shear strength of concrete beams reinforced with FRP bars and without stirrups by compiling a relatively large database of 198 previously published test results (available in appendix). To model shear strength, an artificial neural network was trained by an ensemble of Levenberg-Marquardt and imperialist competitive algorithms. The results suggested superior accuracy of model compared to equations available in specifications and literature.
基金Supported by National Natural Science Foundation of China grants(42022032,41874203,42188101)project of Civil Aerospace"13 th Five Year Plan"Preliminary Research in Space Science(D020301,D030202),Strategic Priority Research Program of CAS(XDA17010301)+1 种基金Key Research Program of Frontier Sciences CAS(QYZDJ-SSW-JSC028)International Partner-National Program of CAS(183311KYSB20200017)。
文摘The local time dependence of the geomagnetic disturbances during magnetic storms indicates the necessity of forecasting the localized magnetic storm indices.For the first time,we construct prediction models for the SuperMAG partial ring current indices(SMR-LT),with the advance time increasing from 1 h to 12 h by Long Short-Term Memory(LSTM)neural network.Generally,the prediction performance decreases with the advance time and is better for the SMR-06 index than for the SMR-00,SMR-12,and SMR-18 index.For the predictions with 12 h ahead,the correlation coefficient is 0.738,0.608,0.665,and 0.613,respectively.To avoid the over-represented effect of massive data during geomagnetic quiet periods,only the data during magnetic storms are used to train and test our models,and the improvement in prediction metrics increases with the advance time.For example,for predicting the storm-time SMR-06 index with 12 h ahead,the correlation coefficient and the prediction efficiency increases from 0.674 to 0.691,and from 0.349 to 0.455,respectively.The evaluation of the model performance for forecasting the storm intensity shows that the relative error for intense storms is usually less than the relative error for moderate storms.
基金National Natural Science Foundation of China(62161048)Sichuan Science and Technology Program(2022NSFSC0547,2022ZYD0109)。
文摘In this paper,a feature selection method for determining input parameters in antenna modeling is proposed.In antenna modeling,the input feature of artificial neural network(ANN)is geometric parameters.The selection criteria contain correlation and sensitivity between the geometric parameter and the electromagnetic(EM)response.Maximal information coefficient(MIC),an exploratory data mining tool,is introduced to evaluate both linear and nonlinear correlations.The EM response range is utilized to evaluate the sensitivity.The wide response range corresponding to varying values of a parameter implies the parameter is highly sensitive and the narrow response range suggests the parameter is insensitive.Only the parameter which is highly correlative and sensitive is selected as the input of ANN,and the sampling space of the model is highly reduced.The modeling of a wideband and circularly polarized antenna is studied as an example to verify the effectiveness of the proposed method.The number of input parameters decreases from8 to 4.The testing errors of|S_(11)|and axis ratio are reduced by8.74%and 8.95%,respectively,compared with the ANN with no feature selection.