期刊文献+
共找到1,433篇文章
< 1 2 72 >
每页显示 20 50 100
Artificial neural network modeling of gold dissolution in cyanide media 被引量:3
1
作者 S.Khoshjavan M.Mazloumi B.Rezai 《Journal of Central South University》 SCIE EI CAS 2011年第6期1976-1984,共9页
The effects of cyanidation conditions on gold dissolution were studied by artificial neural network (ANN) modeling. Eighty-five datasets were used to estimate the gold dissolution. Six input parameters, time, solid ... The effects of cyanidation conditions on gold dissolution were studied by artificial neural network (ANN) modeling. Eighty-five datasets were used to estimate the gold dissolution. Six input parameters, time, solid percentage, P50 of particle, NaCN content in cyanide media, temperature of solution and pH value were used. For selecting the best model, the outputs of models were compared with measured data. A fourth-layer ANN is found to be optimum with architecture of twenty, fifteen, ten and five neurons in the first, second, third and fourth hidden layers, respectively, and one neuron in output layer. The results of artificial neural network show that the square correlation coefficients (R2) of training, testing and validating data achieve 0.999 1, 0.996 4 and 0.9981, respectively. Sensitivity analysis shows that the highest and lowest effects on the gold dissolution rise from time and pH, respectively It is verified that the predicted values of ANN coincide well with the experimental results. 展开更多
关键词 artificial neural network GOLD CYANIDATION modeling sensitivity analysis
在线阅读 下载PDF
Artificial Neural Network Modeling Enhancing Shear Wave Transit Time Prediction
2
作者 Mohammad Nabaei Arash Shadravan Khalil Shahbazi 《地学前缘》 EI CAS CSCD 北大核心 2009年第S1期85-85,共1页
Sonic log is the most versatile reservoir evaluation tool that has been introduced to the industry. Compaction,erosion and over pressurized zone can be evaluated by sonic log.Also primary porosity can be determined fr... Sonic log is the most versatile reservoir evaluation tool that has been introduced to the industry. Compaction,erosion and over pressurized zone can be evaluated by sonic log.Also primary porosity can be determined from compressional sonic wave transit time and secondary porosity will be calculated by comparing sonic derived porosity log with neutron and density based porosity log.On the other hand all of the rock mechanical properties can be evaluated using simultaneous use of compressional and shear sonic wave transit time.It is essential to have 展开更多
关键词 sonic VELOCITY geomechnical modelING artificial neural networkS
在线阅读 下载PDF
Recycling Strategy and Recyclability Assessment Model Based on the Artificial Neural Network
3
作者 LIU Zhi-feng, LIU Xue-Ping, WANG Shu-wang, LIU Guang-fu (College of Mechanical & Auto Engineering, Hefei University of Techno logy, Hefei 230009, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期153-154,共2页
Now, a rapidly growing concern for the environmental protection and resource utilization has stimulated many new activities in the in dustrialized world for coping with urgent environmental problems created by the ste... Now, a rapidly growing concern for the environmental protection and resource utilization has stimulated many new activities in the in dustrialized world for coping with urgent environmental problems created by the steadily increasing consumption of industrial products. Increasingly stringent r egulations and widely expressed public concern for the environment highlight the importance of disposing solid waste generated from industrial and consumable pr oducts. How to efficiently recycle and tackle this problem has been a very impo rtant issue over the world. Designing products for recyclability is driven by environmental and economic goals. To obtain good recyclability, two measures can be adopted. One is better recycling strategy and technology; the other is design for recycling (DFR). The recycling strategies of products generally inclu de: reuse, service, remanufacturing, recycling of production scraps during the p roduct usage, recycle (separation first) and disposal. Recyclability assessment is a very important content in DFR. This paper first discusses the content of D FR and strategies and types related to products recyclability, and points out th at easy or difficult recyclability depends on the design phase. Then method and procedure of recyclability assessment based on ANN is explored in detail. The pr ocess consists of selection of the ANN input and output parameters, control of t he sample quality and construction and training of the neural network. At la st, the case study shows this method is simple and operative. 展开更多
关键词 recycling strategy product recycling artificial neural network assessment model design for recycling
在线阅读 下载PDF
Prediction Model of Soil Nutrients Loss Based on Artificial Neural Network
4
作者 WANG Zhi-liang,FU Qiang,LIANG Chuan (Hydroelectric College,Sichuan University) 《Journal of Northeast Agricultural University(English Edition)》 CAS 2001年第1期37-42,共6页
On the basis of Artificial Neural Network theory, a back propagation neural network with one middle layer is building in this paper, and its algorithms is also given, Using this BP network model, study the case of Mal... On the basis of Artificial Neural Network theory, a back propagation neural network with one middle layer is building in this paper, and its algorithms is also given, Using this BP network model, study the case of Malian-River basin. The results by calculating show that the solution based on BP algorithms are consis- tent with those based multiple - variables linear regression model. They also indicate that BP model in this paper is reasonable and BP algorithms are feasible. 展开更多
关键词 SOIL Prediction model of Soil Nutrients Loss Based on artificial neural network
在线阅读 下载PDF
Structural reliability analysis using enhanced cuckoo search algorithm and artificial neural network 被引量:6
5
作者 QIN Qiang FENG Yunwen LI Feng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第6期1317-1326,共10页
The present study proposed an enhanced cuckoo search(ECS) algorithm combined with artificial neural network(ANN) as the surrogate model to solve structural reliability problems. In order to enhance the accuracy and co... The present study proposed an enhanced cuckoo search(ECS) algorithm combined with artificial neural network(ANN) as the surrogate model to solve structural reliability problems. In order to enhance the accuracy and convergence rate of the original cuckoo search(CS) algorithm, the main parameters namely, abandon probability of worst nests paand search step sizeα0 are dynamically adjusted via nonlinear control equations. In addition, a global-best guided equation incorporating the information of global best nest is introduced to the ECS to enhance its exploitation. Then, the proposed ECS is linked to the well-trained ANN model for structural reliability analysis. The computational capability of the proposed algorithm is validated using five typical structural reliability problems and an engineering application. The comparison results show the efficiency and accuracy of the proposed algorithm. 展开更多
关键词 structural reliability enhanced cuckoo search(ECS) artificial neural network(ann) cuckoo search(CS) algorithm
在线阅读 下载PDF
Soft measurement model of ring's dimensions for vertical hot ring rolling process using neural networks optimized by genetic algorithm 被引量:2
6
作者 汪小凯 华林 +3 位作者 汪晓旋 梅雪松 朱乾浩 戴玉同 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第1期17-29,共13页
Vertical hot ring rolling(VHRR) process has the characteristics of nonlinearity,time-variation and being susceptible to disturbance.Furthermore,the ring's growth is quite fast within a short time,and the rolled ri... Vertical hot ring rolling(VHRR) process has the characteristics of nonlinearity,time-variation and being susceptible to disturbance.Furthermore,the ring's growth is quite fast within a short time,and the rolled ring's position is asymmetrical.All of these cause that the ring's dimensions cannot be measured directly.Through analyzing the relationships among the dimensions of ring blanks,the positions of rolls and the ring's inner and outer diameter,the soft measurement model of ring's dimensions is established based on the radial basis function neural network(RBFNN).A mass of data samples are obtained from VHRR finite element(FE) simulations to train and test the soft measurement NN model,and the model's structure parameters are deduced and optimized by genetic algorithm(GA).Finally,the soft measurement system of ring's dimensions is established and validated by the VHRR experiments.The ring's dimensions were measured artificially and calculated by the soft measurement NN model.The results show that the calculation values of GA-RBFNN model are close to the artificial measurement data.In addition,the calculation accuracy of GA-RBFNN model is higher than that of RBFNN model.The research results suggest that the soft measurement NN model has high precision and flexibility.The research can provide practical methods and theoretical guidance for the accurate measurement of VHRR process. 展开更多
关键词 vertical hot ring rolling dimension precision soft measurement model artificial neural network genetic algorithm
在线阅读 下载PDF
Determination of penetration depth at high velocity impact using finite element method and artificial neural network tools 被引量:4
7
作者 Nam?k KILI? Blent EKICI Selim HARTOMACIOG LU 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2015年第2期110-122,共13页
Determination of ballistic performance of an armor solution is a complicated task and evolved significantly with the application of finite element methods(FEM) in this research field.The traditional armor design studi... Determination of ballistic performance of an armor solution is a complicated task and evolved significantly with the application of finite element methods(FEM) in this research field.The traditional armor design studies performed with FEM requires sophisticated procedures and intensive computational effort,therefore simpler and accurate numerical approaches are always worthwhile to decrease armor development time.This study aims to apply a hybrid method using FEM simulation and artificial neural network(ANN) analysis to approximate ballistic limit thickness for armor steels.To achieve this objective,a predictive model based on the artificial neural networks is developed to determine ballistic resistance of high hardness armor steels against 7.62 mm armor piercing ammunition.In this methodology,the FEM simulations are used to create training cases for Multilayer Perceptron(MLP) three layer networks.In order to validate FE simulation methodology,ballistic shot tests on 20 mm thickness target were performed according to standard Stanag 4569.Afterwards,the successfully trained ANN(s) is used to predict the ballistic limit thickness of 500 HB high hardness steel armor.Results show that even with limited number of data,FEM-ANN approach can be used to predict ballistic penetration depth with adequate accuracy. 展开更多
关键词 人工神经网络 有限元法 穿透深度 性能测定 高速冲击 有限元模拟 FEM模拟 工具
在线阅读 下载PDF
Neural network modeling to evaluate the dynamic flow stress of high strength armor steels under high strain rate compression 被引量:3
8
作者 Ravindranadh BOBBILI V.MADHU A.K.GOGIA 《Defence Technology(防务技术)》 SCIE EI CAS 2014年第4期334-342,共9页
An artificial neural network(ANN) constitutive model is developed for high strength armor steel tempered at 500 C, 600 C and 650 C based on high strain rate data generated from split Hopkinson pressure bar(SHPB) exper... An artificial neural network(ANN) constitutive model is developed for high strength armor steel tempered at 500 C, 600 C and 650 C based on high strain rate data generated from split Hopkinson pressure bar(SHPB) experiments. A new neural network configuration consisting of both training and validation is effectively employed to predict flow stress. Tempering temperature, strain rate and strain are considered as inputs, whereas flow stress is taken as output of the neural network. A comparative study on Johnsone Cook(Je C) model and neural network model is performed. It was observed that the developed neural network model could predict flow stress under various strain rates and tempering temperatures. The experimental stressestrain data obtained from high strain rate compression tests using SHPB, over a range of tempering temperatures(500e650 C), strains(0.05e0.2) and strain rates(1000e5500/s) are employed to formulate Je C model to predict the high strain rate deformation behavior of high strength armor steels. The J-C model and the back-propagation ANN model were developed to predict the high strain rate deformation behavior of high strength armor steel and their predictability is evaluated in terms of correlation coefficient(R) and average absolute relative error(AARE). R and AARE for the Je C model are found to be 0.7461 and 27.624%, respectively, while R and AARE for the ANN model are 0.9995 and 2.58%, respectively. It was observed that the predictions by ANN model are in consistence with the experimental data for all tempering temperatures. 展开更多
关键词 人工神经网络模型 高应变率 高强度 装甲钢 流变应力 可预测性 压缩 评估
在线阅读 下载PDF
Artificial Neural Network Applied to Quality Diagnosis
9
作者 Yang Xu(Shandong Architectural and Civil Engineering Institute, Jinan 250014, P. R. ChinaWang Xingyuan(Shandong University of Technology, Jinan 250061, P. R. China) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1997年第2期73-80,共8页
In this paper, we first make a brief review on the fundamental properties of artificial neural networks (ANN) and the basic models, and explore emphatically some potential application of artificial neural networks in ... In this paper, we first make a brief review on the fundamental properties of artificial neural networks (ANN) and the basic models, and explore emphatically some potential application of artificial neural networks in the area of product quality diagnosis, prediction and control, state supervision and classification, factor recognition, and expert system based diagnosis, then set up the ANN models and expert system for quality forecasting, monitoring and diagnosing. We point out that combining ANN with other techniques will have the broad development and application of perspectives. Finally, the paper gives out some practical applications for the models and the system. 展开更多
关键词 artificial neural network (ann) Quality diagnosis Pattern recognition Expert system.
在线阅读 下载PDF
The Application of Artificial Neural Network in Assessing Chinese Mobile Internet Service
10
作者 Zhu Jiachuan 《学术界》 CSSCI 北大核心 2014年第6期282-288,共7页
This paper pays its attention on Chinese mobile Internet service( MIS). Chinese MIS is developing so rapidly that the research on the mechanism of the formation of MIS assessment makes significant sense and therefore ... This paper pays its attention on Chinese mobile Internet service( MIS). Chinese MIS is developing so rapidly that the research on the mechanism of the formation of MIS assessment makes significant sense and therefore the three layers construct of the artificial neural network( ANN) theory is applied to address the problem. The final research model contains MIS features including personalization,localization,reachability,connectivity,convenience and ubiquity as the input layer variables,perceived MIS quality and MIS satisfaction as the hidden layer variables and reuse intention as the output layer variable. MIS risk is identified as the mediating variable. Theoretically,the framework is robust and reveals the mechanism of how customers evaluate a certain mobile Internet service. Practically,the model based on ANN should shed some light on how to understand and improve customer perceived mobile Internet service for both MIS giants and new comers. 展开更多
关键词 人工神经网络 互联网服务 质量管理信息系统 移动 中国 应用 评估 MIS
在线阅读 下载PDF
AHP-CRITIC结合BP-ANN的归志方提取工艺优化研究
11
作者 李月婷 魏祖英 +7 位作者 王腾腾 程超 谭颖 许一帆 霍滢滢 高家乐 刘洁 肖红斌 《分析测试学报》 北大核心 2025年第11期2256-2264,共9页
基于层次分析-指标相关性权重确定的组合加权法(AHP-CRITIC)结合反向传播人工神经网络(BPANN)仿真预测对归志方的提取工艺进行优化。AHP-CRITIC组合加权法确定人参皂苷Rg1、人参皂苷Re、人参皂苷Rb1、细叶远志皂苷、芍药苷、阿魏酸和出... 基于层次分析-指标相关性权重确定的组合加权法(AHP-CRITIC)结合反向传播人工神经网络(BPANN)仿真预测对归志方的提取工艺进行优化。AHP-CRITIC组合加权法确定人参皂苷Rg1、人参皂苷Re、人参皂苷Rb1、细叶远志皂苷、芍药苷、阿魏酸和出膏率的权重系数分别为0.1907、0.2175、0.2341、0.0894、0.1195、0.0875、0.0613,最佳提取工艺为加10倍量溶剂、每次2 h、提取3次。在此基础上,基于BPANN仿真模型预测与验证了该最佳工艺。进一步将AHP-CRITIC与BP-ANN进行联合分析,结果表明10倍量溶剂、每次1 h、提取2次与上述最佳工艺参数无统计学差异,即在此工艺下可以保证提取效果并节约能源,为后续归志方大生产提取工艺选择提供了参考。该文建立的AHP-CRITIC结合BP-ANN的综合试验方法为中药复方提取工艺的现代化研究提供了可靠的方法支撑。 展开更多
关键词 归志方 层次分析-指标相关性权重确定的组合加权法(AHP-CRITIC) 反向传播人工神经网络(BP-ann) 提取工艺 正交试验设计
在线阅读 下载PDF
基于BP-ANN的人工渗滤系统去除总磷过程优化
12
作者 刘元坤 曹塬琪 +2 位作者 于艾鑫 李星 郭晓天 《中国环境科学》 北大核心 2025年第6期3151-3160,共10页
本文利用BBD响应面法(BBD-RSM)和反向传播人工神经网络(BP-ANN)算法对活性炭吸附总磷(TP)的过程参数(接触时间、初始浓度、温度、pH值)进行了建模和预测,并结合遗传算法(GA)对BP-ANN模型中的反应条件进行优化.结果表明,在BBD-RSM模型中,... 本文利用BBD响应面法(BBD-RSM)和反向传播人工神经网络(BP-ANN)算法对活性炭吸附总磷(TP)的过程参数(接触时间、初始浓度、温度、pH值)进行了建模和预测,并结合遗传算法(GA)对BP-ANN模型中的反应条件进行优化.结果表明,在BBD-RSM模型中,P<0.0001,可较好的对TP的去除过程进行预测,接触时间为TP去除率最显著的参数,TP吸附过程中各因素的相对影响顺序为:接触时间>pH值>温度>初始浓度.采用BP-ANN模型进行优化,最佳网络结构为4-8-1.敏感性分析表明,影响TP去除率的因素依次为接触时间(34.05%)>pH值(28.67%)>温度(19.56%)>初始浓度(17.72%).基于BP-ANN模型,采用GA优化人工渗滤系统运行条件,对TP去除过程的优化结果为:接触时间为720.53min、初始浓度为2.75mg/L、温度为30.62℃、pH为5,达到最佳去除率(99.63%).试验验证分析表明,BP-ANN-GA较BBD-RSM的预测值与实验值相比拥有较高的R 2(0.9939)和较低的RSME(1.2851),说明该模型具有更好的预测能力,能更好的描述人工快速渗滤系统对TP的去除过程. 展开更多
关键词 BBD响应面法 反向传播人工神经网络 遗传算法 总磷 人工快速渗滤系统
在线阅读 下载PDF
电力电子变换器MPC权重系数的ANN设计
13
作者 毕长飞 《机械设计与制造》 北大核心 2025年第9期221-224,共4页
针对电力电子变换器采用有限集模型预测控制(MPC)时,其成本函数中权重系数难以整定的问题,设计了一种基于人工神经网络(ANN)的新型MPC权重系数整定方案。基于仿真平台搭建了变换器电路仿真模型并代入不同权重系数进行测试以获取对应的... 针对电力电子变换器采用有限集模型预测控制(MPC)时,其成本函数中权重系数难以整定的问题,设计了一种基于人工神经网络(ANN)的新型MPC权重系数整定方案。基于仿真平台搭建了变换器电路仿真模型并代入不同权重系数进行测试以获取对应的如总谐波失真等关键性能指标,然后利用这些数据对ANN进行训练,使得ANN具备为任意权重系数组合快速准确估计性能指标的能力。从而,对于任意结合输出指标的用户自定义适应度函数,可快速准确地找到权重系数优化组合。利用不间断电源系统开展了对MPC权重系数设计的ANN方法的实验,实验结果为对于指定的示例性适应度函数,采用AAN设计权重系数后可产生预期的控制性能,并对负载变化具有一定的鲁棒性,同时与仿真模型的误差小于3%,与实测误差小于10%。实验结果验证了所设计的ANN方法整定电力电子变换器MPC权重系数的有效性。 展开更多
关键词 模型预测控制 电力电子变换器 成本函数 权重系数 人工神经网络
在线阅读 下载PDF
Modified imperialist competitive algorithm-based neural network to determine shear strength of concrete beams reinforced with FRP 被引量:6
14
作者 Amir HASANZADE-INALLU Panam ZARFAM Mehdi NIKOO 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第11期3156-3174,共19页
Fiber reinforced polymers (FRPs), unlike steel, are corrosion-resistant and therefore are of interest;however, their use is hindered because their brittle shear is formulated in most specifications using limited data ... Fiber reinforced polymers (FRPs), unlike steel, are corrosion-resistant and therefore are of interest;however, their use is hindered because their brittle shear is formulated in most specifications using limited data available at the time. We aimed to predict the shear strength of concrete beams reinforced with FRP bars and without stirrups by compiling a relatively large database of 198 previously published test results (available in appendix). To model shear strength, an artificial neural network was trained by an ensemble of Levenberg-Marquardt and imperialist competitive algorithms. The results suggested superior accuracy of model compared to equations available in specifications and literature. 展开更多
关键词 concrete shear strength fiber reinforced polymer (FRP) artificial neural networks (anns) Levenberg-Marquardt algorithm imperialist competitive algorithm (ICA)
在线阅读 下载PDF
Prediction of Partial Ring Current Index Using LSTM Neural Network 被引量:1
15
作者 LI Hui WANG Runze WANG Chi 《空间科学学报》 CAS CSCD 北大核心 2022年第5期873-883,共11页
The local time dependence of the geomagnetic disturbances during magnetic storms indicates the necessity of forecasting the localized magnetic storm indices.For the first time,we construct prediction models for the Su... The local time dependence of the geomagnetic disturbances during magnetic storms indicates the necessity of forecasting the localized magnetic storm indices.For the first time,we construct prediction models for the SuperMAG partial ring current indices(SMR-LT),with the advance time increasing from 1 h to 12 h by Long Short-Term Memory(LSTM)neural network.Generally,the prediction performance decreases with the advance time and is better for the SMR-06 index than for the SMR-00,SMR-12,and SMR-18 index.For the predictions with 12 h ahead,the correlation coefficient is 0.738,0.608,0.665,and 0.613,respectively.To avoid the over-represented effect of massive data during geomagnetic quiet periods,only the data during magnetic storms are used to train and test our models,and the improvement in prediction metrics increases with the advance time.For example,for predicting the storm-time SMR-06 index with 12 h ahead,the correlation coefficient and the prediction efficiency increases from 0.674 to 0.691,and from 0.349 to 0.455,respectively.The evaluation of the model performance for forecasting the storm intensity shows that the relative error for intense storms is usually less than the relative error for moderate storms. 展开更多
关键词 Geomagnetic storm Partial Ring Current Index(PRCI) artificial neural network(ann)
在线阅读 下载PDF
基于BBD和RSM/ANN-Pareto建模的微细粒锡石浮选试验优化
16
作者 张胜东 赵瑜 +2 位作者 王晓 童雄 谢贤 《中国有色金属学报》 北大核心 2025年第9期3216-3235,共20页
微细粒锡石浮选过程中多因素耦合效应复杂,传统单因素优化存在显著局限性。本文以云南某低品位微细粒锡石矿为研究对象,通过4因素3水平Box-Behnken试验设计(BBD),考察4种药剂用量对浮选指标的影响,基于BBD试验结果分别采用响应曲面法(R... 微细粒锡石浮选过程中多因素耦合效应复杂,传统单因素优化存在显著局限性。本文以云南某低品位微细粒锡石矿为研究对象,通过4因素3水平Box-Behnken试验设计(BBD),考察4种药剂用量对浮选指标的影响,基于BBD试验结果分别采用响应曲面法(RSM)和人工神经网络-帕累托优化算法(ANNPareto)实现建模优化。结果表明:ANN-Pareto在拟合精度和预测能力方面均显著优于RSM,RSM则在规律揭示方面更具优势。在闭路试验中,RSM优化取得锡品位6.81%、锡回收率69.06%的指标,ANNPareto优化取得锡品位7.04%、锡回收率73.12%的指标。相较于单因素条件试验,RSM和ANN-Pareto优化在保持锡品位基本不变的情况下分别获得2.26和6.34个百分点的锡回收率提升。BBD/RSM/ANN-Pareto耦合模型方法能有效整合试验设计、交互作用揭示与指标优化,可在微细粒锡石浮选优化中发挥显著作用。 展开更多
关键词 微细粒锡石浮选 BOX-BEHNKEN设计 响应曲面法 人工神经网络 PARETO优化
在线阅读 下载PDF
基于混合Wiener-ANN模型的轴承剩余使用寿命预测方法
17
作者 叶新 苏少权 +2 位作者 尚伟 杨帆 文龙 《机械强度》 北大核心 2025年第9期233-240,共8页
轴承作为精密仪器中的关键旋转部件,其运行状态直接影响系统的安全性和稳定性,因此准确预测轴承剩余使用寿命尤为重要。现有的轴承剩余寿命预测方法可分为物理模型类和数据驱动类。物理模型方法具有较高的可解释性,所需样本量少,但预测... 轴承作为精密仪器中的关键旋转部件,其运行状态直接影响系统的安全性和稳定性,因此准确预测轴承剩余使用寿命尤为重要。现有的轴承剩余寿命预测方法可分为物理模型类和数据驱动类。物理模型方法具有较高的可解释性,所需样本量少,但预测精度较低,且不能在线预测;数据驱动方法则具有较高的预测精度和在线预测能力,但需要大量历史样本数据。为此,提出了结合物理模型和数据驱动方法的混合Wiener过程-人工神经网络(Wiener-Artificial Neural Network,Wiener-ANN)模型用于轴承剩余使用寿命预测。该模型通过时频域特征作为多源输入数据优化Wiener过程模型,使用优化后的模型进行第1阶段预测。随后,构建一个以第1阶段预测结果作为训练数据优化的三层ANN,将优化后的Wiener模型与ANN联合用于测试数据集的剩余寿命预测。与传统Wiener模型和ANN方法的预测结果对比表明,该方法在预测精度和应用性能上具有显著优势,具有较好的工程应用价值。 展开更多
关键词 轴承 剩余使用寿命 预测方法 Wiener过程模型 人工神经网络
在线阅读 下载PDF
基于回弹法预测岩石单轴抗压强度的MLP-ANN模型
18
作者 李明 窦斌 +4 位作者 朴昇昊 马云龙 王帅 孙左帅 王祥 《地质科技通报》 北大核心 2025年第1期164-174,共11页
岩石单轴抗压强度是岩土工程中的重要参数,合理确定其数值对工程设计至关重要。本文提出了一种基于多层感知机的人工神经网络(MLP-ANN)模型,用于预测岩石单轴抗压强度。该模型以岩性、节理面、施密特锤回弹高度和纵波波速为输入参数,采... 岩石单轴抗压强度是岩土工程中的重要参数,合理确定其数值对工程设计至关重要。本文提出了一种基于多层感知机的人工神经网络(MLP-ANN)模型,用于预测岩石单轴抗压强度。该模型以岩性、节理面、施密特锤回弹高度和纵波波速为输入参数,采用最大最小归一化进行参数标准化,并通过k折交叉验证提高模型的泛化能力。为优化模型性能,文章探讨了神经元数量、数据分割比例和激活函数对预测结果的影响。经对比验证,研究确定了最优模型配置:神经元数量为8,训练集与测试集比例为8∶2,激活函数选用Tanh函数。模型预测值与实际值对比分析结果表明,最优模型的平均绝对误差为3.500 MPa,均方根误差为5.836 MPa。结果表明,该模型预测误差较小,预测准确率较高,具有较好的实用性。 展开更多
关键词 单轴抗压强度 施密特锤实验 人工神经网络 模型评价 回弹法
在线阅读 下载PDF
基于损伤本构及ANN的改性混凝土耐酸性能研究
19
作者 文庆军 陆靖钰 +3 位作者 覃宇 贺盛 于鹏 晏班夫 《广西大学学报(自然科学版)》 北大核心 2025年第4期759-769,共11页
为了探究偏高岭土和硅灰对改性混凝土耐盐酸性能的影响,进行不同质量分数下(偏高岭土5%、10%;硅灰5%、10%、15%)的盐酸浸泡试验,分析腐蚀对混凝土质量、动态弹性模量、抗压强度、应力-应变曲线及损伤演化的影响,并基于Weibull分布建立... 为了探究偏高岭土和硅灰对改性混凝土耐盐酸性能的影响,进行不同质量分数下(偏高岭土5%、10%;硅灰5%、10%、15%)的盐酸浸泡试验,分析腐蚀对混凝土质量、动态弹性模量、抗压强度、应力-应变曲线及损伤演化的影响,并基于Weibull分布建立损伤本构模型,在经典公式中引入带时间参数的弹性模量及峰值应变二次函数进行双参数拟合。此外,在损伤演化中将弹性模量的衰减作为损伤因子进行分析。结果表明:混凝土中质量分数为5%偏高岭土相较于质量分数为10%的耐酸性更优,M5S5的动态弹性模量及抗压强度48 d后相对0 d仅分别下降22.9%、28.0%,而对照组下降39.7%、74.9%;腐蚀后混凝土延性及能量耗散能力均略有提高;拟合结果指标R^(2)>0.80,表明建立的损伤本构模型与试验数据吻合较好。引入人工神经网络模型并将质量(水泥、偏高岭土和硅灰)和酸腐蚀天数作为其输入参数进行预测,预测结果的平均相对误差为5.85%,表明该模型在预测改性混凝土的耐盐酸性能上具有良好的潜力。 展开更多
关键词 混凝土 腐蚀 WEIBULL分布 本构模型 人工神经网络
在线阅读 下载PDF
Feature selection for determining input parameters in antenna modeling
20
作者 LIU Zhixian SHAO Wei +2 位作者 CHENG Xi OU Haiyan DING Xiao 《Journal of Systems Engineering and Electronics》 2025年第1期15-23,共9页
In this paper,a feature selection method for determining input parameters in antenna modeling is proposed.In antenna modeling,the input feature of artificial neural network(ANN)is geometric parameters.The selection cr... In this paper,a feature selection method for determining input parameters in antenna modeling is proposed.In antenna modeling,the input feature of artificial neural network(ANN)is geometric parameters.The selection criteria contain correlation and sensitivity between the geometric parameter and the electromagnetic(EM)response.Maximal information coefficient(MIC),an exploratory data mining tool,is introduced to evaluate both linear and nonlinear correlations.The EM response range is utilized to evaluate the sensitivity.The wide response range corresponding to varying values of a parameter implies the parameter is highly sensitive and the narrow response range suggests the parameter is insensitive.Only the parameter which is highly correlative and sensitive is selected as the input of ANN,and the sampling space of the model is highly reduced.The modeling of a wideband and circularly polarized antenna is studied as an example to verify the effectiveness of the proposed method.The number of input parameters decreases from8 to 4.The testing errors of|S_(11)|and axis ratio are reduced by8.74%and 8.95%,respectively,compared with the ANN with no feature selection. 展开更多
关键词 antenna modeling artificial neural network(ann) feature selection maximal information coefficient(MIC)
在线阅读 下载PDF
上一页 1 2 72 下一页 到第
使用帮助 返回顶部