Antimicrobial resistance is a global public health threat,and the World Health Organization(WHO)has announced a priority list of the most threatening pathogens against which novel antibiotics need to be developed.The ...Antimicrobial resistance is a global public health threat,and the World Health Organization(WHO)has announced a priority list of the most threatening pathogens against which novel antibiotics need to be developed.The discovery and introduction of novel antibiotics are time-consuming and expensive.According to WHO’s report of antibacterial agents in clinical development,only 18 novel antibiotics have been approved since 2014.Therefore,novel antibiotics are critically needed.Artificial intelligence(AI)has been rapidly applied to drug development since its recent technical breakthrough and has dramatically improved the efficiency of the discovery of novel antibiotics.Here,we first summarized recently marketed novel antibiotics,and antibiotic candidates in clinical development.In addition,we systematically reviewed the involvement of AI in antibacterial drug development and utilization,including small molecules,antimicrobial peptides,phage therapy,essential oils,as well as resistance mechanism prediction,and antibiotic stewardship.展开更多
In recent years,the global surge of High-speed Railway(HSR)revolutionized ground transportation,providing secure,comfortable,and punctual services.The next-gen HSR,fueled by emerging services like video surveillance,e...In recent years,the global surge of High-speed Railway(HSR)revolutionized ground transportation,providing secure,comfortable,and punctual services.The next-gen HSR,fueled by emerging services like video surveillance,emergency communication,and real-time scheduling,demands advanced capabilities in real-time perception,automated driving,and digitized services,which accelerate the integration and application of Artificial Intelligence(AI)in the HSR system.This paper first provides a brief overview of AI,covering its origin,evolution,and breakthrough applications.A comprehensive review is then given regarding the most advanced AI technologies and applications in three macro application domains of the HSR system:mechanical manufacturing and electrical control,communication and signal control,and transportation management.The literature is categorized and compared across nine application directions labeled as intelligent manufacturing of trains and key components,forecast of railroad maintenance,optimization of energy consumption in railroads and trains,communication security,communication dependability,channel modeling and estimation,passenger scheduling,traffic flow forecasting,high-speed railway smart platform.Finally,challenges associated with the application of AI are discussed,offering insights for future research directions.展开更多
Purpose:The transformative impact of disruptive technologies on the restructuring of the times has attracted widespread global attention.This study aims to analyze the characteristics and shortcomings of China’s arti...Purpose:The transformative impact of disruptive technologies on the restructuring of the times has attracted widespread global attention.This study aims to analyze the characteristics and shortcomings of China’s artificial intelligence(AI)disruptive technology policy,and to put forward suggestions for optimizing China’s AI disruptive technology policy.Design/methodology/approach:Develop a three-dimensional analytical framework for“policy tools-policy actors-policy themes”and apply policy tools,social network analysis,and LDA topic model to conduct a comprehensive analysis of the utilization of policy tools,cooperative relationships among policy actors,and the trends in policy theme settings within China’s innovative AI technology policy.Findings:We find that the collaborative relationship among the policy actors of AI disruptive technology in China is insufficiently close.Marginal subjects exhibit low participation in the cooperation network and overly rely on central subjects,forming a“center-periphery”network structure.Policy tool usage is predominantly focused on supply and environmental types,with a severe inadequacy in demand-side policy tool utilization.Policy themes are diverse,encompassing topics such as“Intelligent Services”“Talent Cultivation”“Information Security”and“Technological Innovation”,which will remain focal points.Under the themes of“Intelligent Services”and“Intelligent Governance”,policy tool usage is relatively balanced,with close collaboration among policy entities.However,the theme of“AI Theoretical System”lacks a comprehensive understanding of tool usage and necessitates enhanced cooperation with other policy entities.Research limitations:The data sources and experimental scope are subject to certain limitations,potentially introducing biases and imperfections into the research results,necessitating further validation and refinement.Practical implications:The study introduces a three-dimensional analysis framework for disruptive technology policy texts,which is significant for formulating and enhancing disruptive technology policies.Originality/value:This study utilizes text mining and content analysis techniques to quantitatively analyze disruptive technology policy texts.It systematically evaluates China’s AI policies quantitatively,focusing on policy tools,policy actors,policy themes.The study uncovers the characteristics and deficiencies of current AI policies,offering recommendations for formulating and enhancing disruptive technology policies.展开更多
In recent years,breakthrough has been made in the field of artificial intelligence(AI),which has also revolutionized the industry of robotics.Soft robots featured with high-level safety,less weight,lower power consump...In recent years,breakthrough has been made in the field of artificial intelligence(AI),which has also revolutionized the industry of robotics.Soft robots featured with high-level safety,less weight,lower power consumption have always been one of the research hotspots.Recently,multifunctional sensors for perception of soft robotics have been rapidly developed,while more algorithms and models of machine learning with high accuracy have been optimized and proposed.Designs of soft robots with AI have also been advanced ranging from multimodal sensing,human-machine interaction to effective actuation in robotic systems.Nonethe-less,comprehensive reviews concerning the new developments and strategies for the ingenious design of the soft robotic systems equipped with AI are rare.Here,the new development is systematically reviewed in the field of soft robots with AI.First,background and mechanisms of soft robotic systems are briefed,after which development focused on how to endow the soft robots with AI,including the aspects of feeling,thought and reaction,is illustrated.Next,applications of soft robots with AI are systematically summarized and discussed together with advanced strategies proposed for performance enhancement.Design thoughts for future intelligent soft robotics are pointed out.Finally,some perspectives are put forward.展开更多
Modern medicine is reliant on various medical imaging technologies for non-invasively observing patients’anatomy.However,the interpretation of medical images can be highly subjective and dependent on the expertise of...Modern medicine is reliant on various medical imaging technologies for non-invasively observing patients’anatomy.However,the interpretation of medical images can be highly subjective and dependent on the expertise of clinicians.Moreover,some potentially useful quantitative information in medical images,especially that which is not visible to the naked eye,is often ignored during clinical practice.In contrast,radiomics performs high-throughput feature extraction from medical images,which enables quantitative analysis of medical images and prediction of various clinical endpoints.Studies have reported that radiomics exhibits promising performance in diagnosis and predicting treatment responses and prognosis,demonstrating its potential to be a non-invasive auxiliary tool for personalized medicine.However,radiomics remains in a developmental phase as numerous technical challenges have yet to be solved,especially in feature engineering and statistical modeling.In this review,we introduce the current utility of radiomics by summarizing research on its application in the diagnosis,prognosis,and prediction of treatment responses in patients with cancer.We focus on machine learning approaches,for feature extraction and selection during feature engineering and for imbalanced datasets and multi-modality fusion during statistical modeling.Furthermore,we introduce the stability,reproducibility,and interpretability of features,and the generalizability and interpretability of models.Finally,we offer possible solutions to current challenges in radiomics research.展开更多
Artificial intelligence technology is introduced into the simulation of muzzle flow field to improve its simulation efficiency in this paper.A data-physical fusion driven framework is proposed.First,the known flow fie...Artificial intelligence technology is introduced into the simulation of muzzle flow field to improve its simulation efficiency in this paper.A data-physical fusion driven framework is proposed.First,the known flow field data is used to initialize the model parameters,so that the parameters to be trained are close to the optimal value.Then physical prior knowledge is introduced into the training process so that the prediction results not only meet the known flow field information but also meet the physical conservation laws.Through two examples,it is proved that the model under the fusion driven framework can solve the strongly nonlinear flow field problems,and has stronger generalization and expansion.The proposed model is used to solve a muzzle flow field,and the safety clearance behind the barrel side is divided.It is pointed out that the shape of the safety clearance under different launch speeds is roughly the same,and the pressure disturbance in the area within 9.2 m behind the muzzle section exceeds the safety threshold,which is a dangerous area.Comparison with the CFD results shows that the calculation efficiency of the proposed model is greatly improved under the condition of the same calculation accuracy.The proposed model can quickly and accurately simulate the muzzle flow field under various launch conditions.展开更多
A large amount of mobile data from growing high-speed train(HST)users makes intelligent HST communications enter the era of big data.The corresponding artificial intelligence(AI)based HST channel modeling becomes a tr...A large amount of mobile data from growing high-speed train(HST)users makes intelligent HST communications enter the era of big data.The corresponding artificial intelligence(AI)based HST channel modeling becomes a trend.This paper provides AI based channel characteristic prediction and scenario classification model for millimeter wave(mmWave)HST communications.Firstly,the ray tracing method verified by measurement data is applied to reconstruct four representative HST scenarios.By setting the positions of transmitter(Tx),receiver(Rx),and other parameters,the multi-scenarios wireless channel big data is acquired.Then,based on the obtained channel database,radial basis function neural network(RBF-NN)and back propagation neural network(BP-NN)are trained for channel characteristic prediction and scenario classification.Finally,the channel characteristic prediction and scenario classification capabilities of the network are evaluated by calculating the root mean square error(RMSE).The results show that RBF-NN can generally achieve better performance than BP-NN,and is more applicable to prediction of HST scenarios.展开更多
The present study aimed to explore the potential of artificial intelligence(AI)methodology based on magnetic resonance(MR)images to aid in the management of prostate cancer(PCa).To this end,we reviewed and summarized ...The present study aimed to explore the potential of artificial intelligence(AI)methodology based on magnetic resonance(MR)images to aid in the management of prostate cancer(PCa).To this end,we reviewed and summarized the studies comparing the diagnostic and predictive performance for PCa between AI and common clinical assessment methods based on MR images and/or clinical characteristics,thereby investigating whether AI methods are generally superior to common clinical assessment methods for the diagnosis and prediction fields of PCa.First,we found that,in the included studies of the present study,AI methods were generally equal to or better than the clinical assessment methods for the risk assessment of PCa,such as risk stratification of prostate lesions and the prediction of therapeutic outcomes or PCa progression.In particular,for the diagnosis of clinically significant PCa,the AI methods achieved a higher summary receiver operator characteristic curve(SROC-AUC)than that of the clinical assessment methods(0.87 vs.0.82).For the prediction of adverse pathology,the AI methods also achieved a higher SROC-AUC than that of the clinical assessment methods(0.86 vs.0.75).Second,as revealed by the radiomics quality score(RQS),the studies included in the present study presented a relatively high total average RQS of 15.2(11.0–20.0).Further,the scores of the individual RQS elements implied that the AI models in these studies were constructed with relatively perfect and standard radiomics processes,but the exact generalizability and clinical practicality of the AI models should be further validated using higher levels of evidence,such as prospective studies and open-testing datasets.展开更多
Medical imaging is now being reshaped by artificial intelligence (AI) and progressing rapidly toward future.In this article,we review the recent progress of AI-enabled medical imaging.Firstly,we briefly review the bac...Medical imaging is now being reshaped by artificial intelligence (AI) and progressing rapidly toward future.In this article,we review the recent progress of AI-enabled medical imaging.Firstly,we briefly review the background about AI in its way of evolution.Then,we discuss the recent successes of AI in different medical imaging tasks,especially in image segmentation,registration,detection and recognition.Also,we illustrate several representative applications of AI-enabled medical imaging to show its advantage in real scenario,which includes lung nodule in chest CT,neuroimaging,mammography,and etc.Finally,we report the way of human-machine interaction.We believe that,in the future,AI will not only change the traditional way of medical imaging,but also improve the clinical routines of medical care and enable many aspects of the medical society.展开更多
In the past ten years,the application of artificial intelligence(AI)in biomedicine has increased rapidly,which roots in the rapid growth of biomedicine data,the improvement of computing performance,and the development...In the past ten years,the application of artificial intelligence(AI)in biomedicine has increased rapidly,which roots in the rapid growth of biomedicine data,the improvement of computing performance,and the development of deep learning methods.At present,there are great difficulties in front of AI for solving complex and comprehensive medical problems.Ontology can play an important role in how to make machines have stronger intelligence and has wider applications in the medical field.By using ontologies,(meta)data can be standardized so that data quality is improved and more data analysis methods can be introduced,data integration can be supported by the semantics relationships which are specified in ontologies,and effective logic expression in nature language can be better understood by machine.This can be a pathway to stronger AI.Under this circumstance,the Chinese Conference on Biomedical Ontology and Terminology was held in Beijing in autumn 2019,with the theme“Making Machine Understand Data”.The success of this conference further improves the development of ontology in the field of biomedical information in China,and will promote the integration of Chinese ontology research and application with the international standards and the findability,accessibility,interoperability,and reusability(FAIR)Data Principle.展开更多
Spike-based neural networks,which use spikes or action potentialsto represent information,have gained a lot of attention because of their high energyefficiency and low power consumption.To fully leverage its advantage...Spike-based neural networks,which use spikes or action potentialsto represent information,have gained a lot of attention because of their high energyefficiency and low power consumption.To fully leverage its advantages,convertingthe external analog signals to spikes is an essential prerequisite.Conventionalapproaches including analog-to-digital converters or ring oscillators,and sensorssuffer from high power and area costs.Recent efforts are devoted to constructingartificial sensory neurons based on emerging devices inspired by the biologicalsensory system.They can simultaneously perform sensing and spike conversion,overcoming the deficiencies of traditional sensory systems.This review summarizesand benchmarks the recent progress of artificial sensory neurons.It starts with thepresentation of various mechanisms of biological signal transduction,followed bythe systematic introduction of the emerging devices employed for artificial sensoryneurons.Furthermore,the implementations with different perceptual capabilitiesare briefly outlined and the key metrics and potential applications are also provided.Finally,we highlight the challenges and perspectives for the future development of artificial sensory neurons.展开更多
MODERN medical diagnosis and practice heavily rely on biological data and information from patients’ body.The progress of biomedical sensor,material and mathematical technology provided ever-increasing methods to gat...MODERN medical diagnosis and practice heavily rely on biological data and information from patients’ body.The progress of biomedical sensor,material and mathematical technology provided ever-increasing methods to gather data.While providing more choices and more comprehensive picture of patients’ conditions to doctors and practitioners,these progresses also require more labor efforts to read,analyze,and make decisions based on those data.It is very difficult for the medical human resources to grow at a speed that matches such need for diagnosis-related expert knowledge.The shortage of expertise has caused long waiting time for check report and fatal misjudged diagnosis in public health system,and it will compromise our ability to move towards a more precise,more personalized and more efficient future of medicine.展开更多
Artificial intelligence (AI) is rapidly being applied to a wide range of fields,including medicine,and has been considered as an approach that may augment or substitute human professionals in primary healthcare.Howeve...Artificial intelligence (AI) is rapidly being applied to a wide range of fields,including medicine,and has been considered as an approach that may augment or substitute human professionals in primary healthcare.However,AI also raises several challenges and ethical concerns.In this article,the author investigates and discusses three aspects of AI in medicine and healthcare:the application and promises of AI,special ethical concerns pertaining to AI in some frontier fields,and suggestive ethical governance systems.Despite great potentials of frontier AI research and development in the field of medical care,the ethical challenges induced by its applications has put forward new requirements for governance.To ensure “trustworthy” AI applications in healthcare and medicine,the creation of an ethical global governance framework and system as well as special guidelines for frontier AI applications in medicine are suggested.The most important aspects include the roles of governments in ethical auditing and the responsibilities of stakeholders in the ethical governance system.展开更多
The multi-mode integrated railway system,anchored by the high-speed railway,caters to the diverse travel requirements both within and between cities,offering safe,comfortable,punctual,and eco-friendly transportation s...The multi-mode integrated railway system,anchored by the high-speed railway,caters to the diverse travel requirements both within and between cities,offering safe,comfortable,punctual,and eco-friendly transportation services.With the expansion of the railway networks,enhancing the efficiency and safety of the comprehensive system has become a crucial issue in the advanced development of railway transportation.In light of the prevailing application of artificial intelligence technologies within railway systems,this study leverages large model technology characterized by robust learning capabilities,efficient associative abilities,and linkage analysis to propose an Artificial-intelligent(AI)-powered railway control and dispatching system.This system is elaborately designed with four core functions,including global optimum unattended dispatching,synergetic transportation in multiple modes,high-speed automatic control,and precise maintenance decision and execution.The deployment pathway and essential tasks of the system are further delineated,alongside the challenges and obstacles encountered.The AI-powered system promises a significant enhancement in the operational efficiency and safety of the composite railway system,ensuring a more effective alignment between transportation services and passenger demands.展开更多
With a ten-year horizon from concept to reality, it is time now to start thinking about what will the sixth-generation(6G) mobile communications be on the eve of the fifth-generation(5G) deployment. To pave the way fo...With a ten-year horizon from concept to reality, it is time now to start thinking about what will the sixth-generation(6G) mobile communications be on the eve of the fifth-generation(5G) deployment. To pave the way for the development of 6G and beyond, we provide 6G visions in this paper. We first introduce the state-of-the-art technologies in 5G and indicate the necessity to study 6G. By taking the current and emerging development of wireless communications into consideration, we envision 6G to include three major aspects, namely, mobile ultra-broadband, super Internet-of-Things(IoT), and artificial intelligence(AI). Then, we review key technologies to realize each aspect. In particular, teraherz(THz) communications can be used to support mobile ultra-broadband, symbiotic radio and satellite-assisted communications can be used to achieve super IoT, and machine learning techniques are promising candidates for AI. For each technology, we provide the basic principle, key challenges, and state-of-the-art approaches and solutions.展开更多
In recent years,artificial intelligence (AI) has developed rapidly in the field of medical imaging.However,the collaborations among hospitals,research institutes and enterprises are insufficient at the present,and the...In recent years,artificial intelligence (AI) has developed rapidly in the field of medical imaging.However,the collaborations among hospitals,research institutes and enterprises are insufficient at the present,and there are various issues in technological transformation and value landing of products in this area.To solve the core problems in the developmental path of medical imaging AI,the Chinese Innovative Alliance of Industry,Education,Research and Application of Artificial Intelligence for Medical Imaging compiled the White Paper on Medical Image AI in China.This article introduces the current status of collaboration,the clinical demands for medical imaging AI technique,and the key points in AI technology transformation:robustness,usability and security.We are facing challenges of lacking industry standards,data desensitization standard,assessment system,as well as corresponding regulations and policies to realize the application values of AI products in medical imaging.Further development of AI in medical imaging requires breakthroughs of the core algorithm,deep involvement of doctors,input from capitals,patience from societies,and most importantly,the resolutions from government for multiple difficulties in links of landing the technology.展开更多
How to explore and exploit the full potential of artificial intelligence(AI)technologies in future wireless communications such as beyond 5G(B5G)and 6G is an extremely hot inter-disciplinary research topic around the ...How to explore and exploit the full potential of artificial intelligence(AI)technologies in future wireless communications such as beyond 5G(B5G)and 6G is an extremely hot inter-disciplinary research topic around the world.On the one hand,AI empowers intelligent resource management for wireless communications through powerful learning and automatic adaptation capabilities.On the other hand,embracing AI in wireless communication resource management calls for new network architecture and system models as well as standardized interfaces/protocols/data formats to facilitate the large-scale deployment of AI in future B5G/6G networks.This paper reviews the state-of-art AI-empowered resource management from the framework perspective down to the methodology perspective,not only considering the radio resource(e.g.,spectrum)management but also other types of resources such as computing and caching.We also discuss the challenges and opportunities for AI-based resource management to widely deploy AI in future wireless communication networks.展开更多
As an indispensable branch of wearable electronics,flexible pressure sensors are gaining tremendous attention due to their extensive applications in health monitoring,human-machine interaction,artificial intelligence,...As an indispensable branch of wearable electronics,flexible pressure sensors are gaining tremendous attention due to their extensive applications in health monitoring,human-machine interaction,artificial intelligence,the internet of things,and other fields.In recent years,highly flexible and wearable pressure sensors have been developed using various materials/structures and transduction mechanisms.Morphological engineering of sensing materials at the nanometer and micrometer scales is crucial to obtaining superior sensor performance.This review focuses on the rapid development of morphological engineering technologies for flexible pressure sensors.We discuss different architectures and morphological designs of sensing materials to achieve high performance,including high sensitivity,broad working range,stable sensing,low hysteresis,high transparency,and directional or selective sensing.Additionally,the general fabrication techniques are summarized,including self-assembly,patterning,and auxiliary synthesis methods.Furthermore,we present the emerging applications of high-performing microengineered pressure sensors in healthcare,smart homes,digital sports,security monitoring,and machine learning-enabled computational sensing platform.Finally,the potential challenges and prospects for the future developments of pressure sensors are discussed comprehensively.展开更多
Artificial intelligence(AI),a branch of machine learning(ML)has been increasingly employed in the research of trauma in various aspects.Hemorrhage is the most common cause of trauma-related death.To better elucidate t...Artificial intelligence(AI),a branch of machine learning(ML)has been increasingly employed in the research of trauma in various aspects.Hemorrhage is the most common cause of trauma-related death.To better elucidate the current role of AI and contribute to future development of ML in trauma care,we conducted a review focused on the use of ML in the diagnosis or treatment strategy of traumatic hemorrhage.A literature search was carried out on PubMed and Google scholar.Titles and abstracts were screened and,if deemed appropriate,the full articles were reviewed.We included 89 studies in the review.These studies could be grouped into five areas:(1)prediction of outcomes;(2)risk assessment and injury severity for triage;(3)prediction of transfusions;(4)detection of hemorrhage;and(5)prediction of coagulopathy.Performance analysis of ML in comparison with current standards for trauma care showed that most studies demonstrated the benefits of ML models.However,most studies were retrospective,focused on prediction of mortality,and development of patient outcome scoring systems.Few studies performed model assessment via test datasets obtained from different sources.Prediction models for transfusions and coagulopathy have been developed,but none is in widespread use.AI-enabled ML-driven technology is becoming integral part of the whole course of trauma care.Comparison and application of ML algorithms using different datasets from initial training,testing and validation in prospective and randomized controlled trials are warranted for provision of decision support for individualized patient care as far forward as possible.展开更多
Background:Deep Learning Algorithms(DLA)have become prominent as an application of Artificial Intelligence(Al)Techniques since 2010.This paper introduces the DLA to predict the relationships between individual tree he...Background:Deep Learning Algorithms(DLA)have become prominent as an application of Artificial Intelligence(Al)Techniques since 2010.This paper introduces the DLA to predict the relationships between individual tree height(ITH)and the diameter at breast height(DBH).Methods:A set of 2024 pairs of individual height and diameter at breast height measurements,originating from 150 sample plots located in stands of even aged and pure Anatolian Crimean Pine(Pinus nigra J.F.Arnold ssp.pallasiana(Lamb.)Holmboe)in Konya Forest Enterprise.The present study primarily investigated the capability and usability of DLA models for predicting the relationships between the ITH and the DBH sampled from some stands with different growth structures.The 80 different DLA models,which involve different the alternatives for the numbers of hidden layers and neuron,have been trained and compared to determine optimum and best predictive DLAs network structure.Results:It was determined that the DLA model with 9 layers and 100 neurons has been the best predictive network model compared as those by other different DLA,Artificial Neural Network,Nonlinear Regression and Nonlinear Mixed Effect models.The alternative of 100#neurons and 9#hidden layers in deep learning algorithms resulted in best predictive ITH values with root mean squared error(RMSE,0.5575),percent of the root mean squared error(RMSE%,4.9504%),Akaike information criterion(AIC,-998.9540),Bayesian information criterion(BIC,884.6591),fit index(Fl,0.9436),average absolute error(AAE,0.4077),maximum absolute error(max.AE,2.5106),Bias(0.0057)and percent Bias(Bias%,0.0502%).In addition,these predictive results with DLAs were further validated by the Equivalence tests that showed the DLA models successfully predicted the tree height in the independent dataset.Conclusion:This study has emphasized the capability of the DLA models,novel artificial intelligence technique,for predicting the relationships between individual tree height and the diameter at breast height that can be required information for the management of forests.展开更多
基金supported by the National Natural Science Foundation of China(32300157)the Shanghai Municipal Science and Technology Commission(19411964900)+1 种基金the Major Research and Development Project of Innovative Drugs,Ministry of Science and Technology of China(2017ZX09304005)the Wellcome Trust.
文摘Antimicrobial resistance is a global public health threat,and the World Health Organization(WHO)has announced a priority list of the most threatening pathogens against which novel antibiotics need to be developed.The discovery and introduction of novel antibiotics are time-consuming and expensive.According to WHO’s report of antibacterial agents in clinical development,only 18 novel antibiotics have been approved since 2014.Therefore,novel antibiotics are critically needed.Artificial intelligence(AI)has been rapidly applied to drug development since its recent technical breakthrough and has dramatically improved the efficiency of the discovery of novel antibiotics.Here,we first summarized recently marketed novel antibiotics,and antibiotic candidates in clinical development.In addition,we systematically reviewed the involvement of AI in antibacterial drug development and utilization,including small molecules,antimicrobial peptides,phage therapy,essential oils,as well as resistance mechanism prediction,and antibiotic stewardship.
基金supported by the National Natural Science Foundation of China(62172033).
文摘In recent years,the global surge of High-speed Railway(HSR)revolutionized ground transportation,providing secure,comfortable,and punctual services.The next-gen HSR,fueled by emerging services like video surveillance,emergency communication,and real-time scheduling,demands advanced capabilities in real-time perception,automated driving,and digitized services,which accelerate the integration and application of Artificial Intelligence(AI)in the HSR system.This paper first provides a brief overview of AI,covering its origin,evolution,and breakthrough applications.A comprehensive review is then given regarding the most advanced AI technologies and applications in three macro application domains of the HSR system:mechanical manufacturing and electrical control,communication and signal control,and transportation management.The literature is categorized and compared across nine application directions labeled as intelligent manufacturing of trains and key components,forecast of railroad maintenance,optimization of energy consumption in railroads and trains,communication security,communication dependability,channel modeling and estimation,passenger scheduling,traffic flow forecasting,high-speed railway smart platform.Finally,challenges associated with the application of AI are discussed,offering insights for future research directions.
基金supported by the National Social Science Foundation of China(Grant No.22BTQ089).
文摘Purpose:The transformative impact of disruptive technologies on the restructuring of the times has attracted widespread global attention.This study aims to analyze the characteristics and shortcomings of China’s artificial intelligence(AI)disruptive technology policy,and to put forward suggestions for optimizing China’s AI disruptive technology policy.Design/methodology/approach:Develop a three-dimensional analytical framework for“policy tools-policy actors-policy themes”and apply policy tools,social network analysis,and LDA topic model to conduct a comprehensive analysis of the utilization of policy tools,cooperative relationships among policy actors,and the trends in policy theme settings within China’s innovative AI technology policy.Findings:We find that the collaborative relationship among the policy actors of AI disruptive technology in China is insufficiently close.Marginal subjects exhibit low participation in the cooperation network and overly rely on central subjects,forming a“center-periphery”network structure.Policy tool usage is predominantly focused on supply and environmental types,with a severe inadequacy in demand-side policy tool utilization.Policy themes are diverse,encompassing topics such as“Intelligent Services”“Talent Cultivation”“Information Security”and“Technological Innovation”,which will remain focal points.Under the themes of“Intelligent Services”and“Intelligent Governance”,policy tool usage is relatively balanced,with close collaboration among policy entities.However,the theme of“AI Theoretical System”lacks a comprehensive understanding of tool usage and necessitates enhanced cooperation with other policy entities.Research limitations:The data sources and experimental scope are subject to certain limitations,potentially introducing biases and imperfections into the research results,necessitating further validation and refinement.Practical implications:The study introduces a three-dimensional analysis framework for disruptive technology policy texts,which is significant for formulating and enhancing disruptive technology policies.Originality/value:This study utilizes text mining and content analysis techniques to quantitatively analyze disruptive technology policy texts.It systematically evaluates China’s AI policies quantitatively,focusing on policy tools,policy actors,policy themes.The study uncovers the characteristics and deficiencies of current AI policies,offering recommendations for formulating and enhancing disruptive technology policies.
基金supported by the Hong Kong Polytechnic University(Project No.1-WZ1Y).
文摘In recent years,breakthrough has been made in the field of artificial intelligence(AI),which has also revolutionized the industry of robotics.Soft robots featured with high-level safety,less weight,lower power consumption have always been one of the research hotspots.Recently,multifunctional sensors for perception of soft robotics have been rapidly developed,while more algorithms and models of machine learning with high accuracy have been optimized and proposed.Designs of soft robots with AI have also been advanced ranging from multimodal sensing,human-machine interaction to effective actuation in robotic systems.Nonethe-less,comprehensive reviews concerning the new developments and strategies for the ingenious design of the soft robotic systems equipped with AI are rare.Here,the new development is systematically reviewed in the field of soft robots with AI.First,background and mechanisms of soft robotic systems are briefed,after which development focused on how to endow the soft robots with AI,including the aspects of feeling,thought and reaction,is illustrated.Next,applications of soft robots with AI are systematically summarized and discussed together with advanced strategies proposed for performance enhancement.Design thoughts for future intelligent soft robotics are pointed out.Finally,some perspectives are put forward.
基金supported in part by the National Natural Science Foundation of China(82072019)the Shenzhen Basic Research Program(JCYJ20210324130209023)+5 种基金the Shenzhen-Hong Kong-Macao S&T Program(Category C)(SGDX20201103095002019)the Mainland-Hong Kong Joint Funding Scheme(MHKJFS)(MHP/005/20),the Project of Strategic Importance Fund(P0035421)the Projects of RISA(P0043001)from the Hong Kong Polytechnic University,the Natural Science Foundation of Jiangsu Province(BK20201441)the Provincial and Ministry Co-constructed Project of Henan Province Medical Science and Technology Research(SBGJ202103038,SBGJ202102056)the Henan Province Key R&D and Promotion Project(Science and Technology Research)(222102310015)the Natural Science Foundation of Henan Province(222300420575),and the Henan Province Science and Technology Research(222102310322).
文摘Modern medicine is reliant on various medical imaging technologies for non-invasively observing patients’anatomy.However,the interpretation of medical images can be highly subjective and dependent on the expertise of clinicians.Moreover,some potentially useful quantitative information in medical images,especially that which is not visible to the naked eye,is often ignored during clinical practice.In contrast,radiomics performs high-throughput feature extraction from medical images,which enables quantitative analysis of medical images and prediction of various clinical endpoints.Studies have reported that radiomics exhibits promising performance in diagnosis and predicting treatment responses and prognosis,demonstrating its potential to be a non-invasive auxiliary tool for personalized medicine.However,radiomics remains in a developmental phase as numerous technical challenges have yet to be solved,especially in feature engineering and statistical modeling.In this review,we introduce the current utility of radiomics by summarizing research on its application in the diagnosis,prognosis,and prediction of treatment responses in patients with cancer.We focus on machine learning approaches,for feature extraction and selection during feature engineering and for imbalanced datasets and multi-modality fusion during statistical modeling.Furthermore,we introduce the stability,reproducibility,and interpretability of features,and the generalizability and interpretability of models.Finally,we offer possible solutions to current challenges in radiomics research.
基金Supported by the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20210347)Supported by the National Natural Science Foundation of China(Grant No.U2141246).
文摘Artificial intelligence technology is introduced into the simulation of muzzle flow field to improve its simulation efficiency in this paper.A data-physical fusion driven framework is proposed.First,the known flow field data is used to initialize the model parameters,so that the parameters to be trained are close to the optimal value.Then physical prior knowledge is introduced into the training process so that the prediction results not only meet the known flow field information but also meet the physical conservation laws.Through two examples,it is proved that the model under the fusion driven framework can solve the strongly nonlinear flow field problems,and has stronger generalization and expansion.The proposed model is used to solve a muzzle flow field,and the safety clearance behind the barrel side is divided.It is pointed out that the shape of the safety clearance under different launch speeds is roughly the same,and the pressure disturbance in the area within 9.2 m behind the muzzle section exceeds the safety threshold,which is a dangerous area.Comparison with the CFD results shows that the calculation efficiency of the proposed model is greatly improved under the condition of the same calculation accuracy.The proposed model can quickly and accurately simulate the muzzle flow field under various launch conditions.
基金supported by the National Key R&D Program of China under Grant 2021YFB1407001the National Natural Science Foundation of China (NSFC) under Grants 62001269 and 61960206006+2 种基金the State Key Laboratory of Rail Traffic Control and Safety (under Grants RCS2022K009)Beijing Jiaotong University, the Future Plan Program for Young Scholars of Shandong Universitythe EU H2020 RISE TESTBED2 project under Grant 872172
文摘A large amount of mobile data from growing high-speed train(HST)users makes intelligent HST communications enter the era of big data.The corresponding artificial intelligence(AI)based HST channel modeling becomes a trend.This paper provides AI based channel characteristic prediction and scenario classification model for millimeter wave(mmWave)HST communications.Firstly,the ray tracing method verified by measurement data is applied to reconstruct four representative HST scenarios.By setting the positions of transmitter(Tx),receiver(Rx),and other parameters,the multi-scenarios wireless channel big data is acquired.Then,based on the obtained channel database,radial basis function neural network(RBF-NN)and back propagation neural network(BP-NN)are trained for channel characteristic prediction and scenario classification.Finally,the channel characteristic prediction and scenario classification capabilities of the network are evaluated by calculating the root mean square error(RMSE).The results show that RBF-NN can generally achieve better performance than BP-NN,and is more applicable to prediction of HST scenarios.
基金supported by the Natural Science Foundation of Beijing(Z200027)the National Natural Science Foundation of China(62027901,81930053)the Key-Area Research and Development Program of Guangdong Province(2021B0101420005).
文摘The present study aimed to explore the potential of artificial intelligence(AI)methodology based on magnetic resonance(MR)images to aid in the management of prostate cancer(PCa).To this end,we reviewed and summarized the studies comparing the diagnostic and predictive performance for PCa between AI and common clinical assessment methods based on MR images and/or clinical characteristics,thereby investigating whether AI methods are generally superior to common clinical assessment methods for the diagnosis and prediction fields of PCa.First,we found that,in the included studies of the present study,AI methods were generally equal to or better than the clinical assessment methods for the risk assessment of PCa,such as risk stratification of prostate lesions and the prediction of therapeutic outcomes or PCa progression.In particular,for the diagnosis of clinically significant PCa,the AI methods achieved a higher summary receiver operator characteristic curve(SROC-AUC)than that of the clinical assessment methods(0.87 vs.0.82).For the prediction of adverse pathology,the AI methods also achieved a higher SROC-AUC than that of the clinical assessment methods(0.86 vs.0.75).Second,as revealed by the radiomics quality score(RQS),the studies included in the present study presented a relatively high total average RQS of 15.2(11.0–20.0).Further,the scores of the individual RQS elements implied that the AI models in these studies were constructed with relatively perfect and standard radiomics processes,but the exact generalizability and clinical practicality of the AI models should be further validated using higher levels of evidence,such as prospective studies and open-testing datasets.
文摘Medical imaging is now being reshaped by artificial intelligence (AI) and progressing rapidly toward future.In this article,we review the recent progress of AI-enabled medical imaging.Firstly,we briefly review the background about AI in its way of evolution.Then,we discuss the recent successes of AI in different medical imaging tasks,especially in image segmentation,registration,detection and recognition.Also,we illustrate several representative applications of AI-enabled medical imaging to show its advantage in real scenario,which includes lung nodule in chest CT,neuroimaging,mammography,and etc.Finally,we report the way of human-machine interaction.We believe that,in the future,AI will not only change the traditional way of medical imaging,but also improve the clinical routines of medical care and enable many aspects of the medical society.
文摘In the past ten years,the application of artificial intelligence(AI)in biomedicine has increased rapidly,which roots in the rapid growth of biomedicine data,the improvement of computing performance,and the development of deep learning methods.At present,there are great difficulties in front of AI for solving complex and comprehensive medical problems.Ontology can play an important role in how to make machines have stronger intelligence and has wider applications in the medical field.By using ontologies,(meta)data can be standardized so that data quality is improved and more data analysis methods can be introduced,data integration can be supported by the semantics relationships which are specified in ontologies,and effective logic expression in nature language can be better understood by machine.This can be a pathway to stronger AI.Under this circumstance,the Chinese Conference on Biomedical Ontology and Terminology was held in Beijing in autumn 2019,with the theme“Making Machine Understand Data”.The success of this conference further improves the development of ontology in the field of biomedical information in China,and will promote the integration of Chinese ontology research and application with the international standards and the findability,accessibility,interoperability,and reusability(FAIR)Data Principle.
基金supported by the Key-Area Research and Development Program of Guangdong Province(Grants No.2021B0909060002)National Natural Science Foundation of China(Grants No.62204219,62204140)Major Program of Natural Science Foundation of Zhejiang Province(Grants No.LDT23F0401).
文摘Spike-based neural networks,which use spikes or action potentialsto represent information,have gained a lot of attention because of their high energyefficiency and low power consumption.To fully leverage its advantages,convertingthe external analog signals to spikes is an essential prerequisite.Conventionalapproaches including analog-to-digital converters or ring oscillators,and sensorssuffer from high power and area costs.Recent efforts are devoted to constructingartificial sensory neurons based on emerging devices inspired by the biologicalsensory system.They can simultaneously perform sensing and spike conversion,overcoming the deficiencies of traditional sensory systems.This review summarizesand benchmarks the recent progress of artificial sensory neurons.It starts with thepresentation of various mechanisms of biological signal transduction,followed bythe systematic introduction of the emerging devices employed for artificial sensoryneurons.Furthermore,the implementations with different perceptual capabilitiesare briefly outlined and the key metrics and potential applications are also provided.Finally,we highlight the challenges and perspectives for the future development of artificial sensory neurons.
文摘MODERN medical diagnosis and practice heavily rely on biological data and information from patients’ body.The progress of biomedical sensor,material and mathematical technology provided ever-increasing methods to gather data.While providing more choices and more comprehensive picture of patients’ conditions to doctors and practitioners,these progresses also require more labor efforts to read,analyze,and make decisions based on those data.It is very difficult for the medical human resources to grow at a speed that matches such need for diagnosis-related expert knowledge.The shortage of expertise has caused long waiting time for check report and fatal misjudged diagnosis in public health system,and it will compromise our ability to move towards a more precise,more personalized and more efficient future of medicine.
文摘Artificial intelligence (AI) is rapidly being applied to a wide range of fields,including medicine,and has been considered as an approach that may augment or substitute human professionals in primary healthcare.However,AI also raises several challenges and ethical concerns.In this article,the author investigates and discusses three aspects of AI in medicine and healthcare:the application and promises of AI,special ethical concerns pertaining to AI in some frontier fields,and suggestive ethical governance systems.Despite great potentials of frontier AI research and development in the field of medical care,the ethical challenges induced by its applications has put forward new requirements for governance.To ensure “trustworthy” AI applications in healthcare and medicine,the creation of an ethical global governance framework and system as well as special guidelines for frontier AI applications in medicine are suggested.The most important aspects include the roles of governments in ethical auditing and the responsibilities of stakeholders in the ethical governance system.
基金supported by the National Key R&D Program of China(2022YFB4300500).
文摘The multi-mode integrated railway system,anchored by the high-speed railway,caters to the diverse travel requirements both within and between cities,offering safe,comfortable,punctual,and eco-friendly transportation services.With the expansion of the railway networks,enhancing the efficiency and safety of the comprehensive system has become a crucial issue in the advanced development of railway transportation.In light of the prevailing application of artificial intelligence technologies within railway systems,this study leverages large model technology characterized by robust learning capabilities,efficient associative abilities,and linkage analysis to propose an Artificial-intelligent(AI)-powered railway control and dispatching system.This system is elaborately designed with four core functions,including global optimum unattended dispatching,synergetic transportation in multiple modes,high-speed automatic control,and precise maintenance decision and execution.The deployment pathway and essential tasks of the system are further delineated,alongside the challenges and obstacles encountered.The AI-powered system promises a significant enhancement in the operational efficiency and safety of the composite railway system,ensuring a more effective alignment between transportation services and passenger demands.
基金supported in part by National Natural Science Foundation of China under Grants 61631005, 61801101, U1801261, and 61571100
文摘With a ten-year horizon from concept to reality, it is time now to start thinking about what will the sixth-generation(6G) mobile communications be on the eve of the fifth-generation(5G) deployment. To pave the way for the development of 6G and beyond, we provide 6G visions in this paper. We first introduce the state-of-the-art technologies in 5G and indicate the necessity to study 6G. By taking the current and emerging development of wireless communications into consideration, we envision 6G to include three major aspects, namely, mobile ultra-broadband, super Internet-of-Things(IoT), and artificial intelligence(AI). Then, we review key technologies to realize each aspect. In particular, teraherz(THz) communications can be used to support mobile ultra-broadband, symbiotic radio and satellite-assisted communications can be used to achieve super IoT, and machine learning techniques are promising candidates for AI. For each technology, we provide the basic principle, key challenges, and state-of-the-art approaches and solutions.
基金Supported by the National Key Research&Development Program of China(2018YFC0116404)Shanghai Health and Family Planning Commission Intelligence Medical Research Program(2018ZHYL0101)Shanghai Science and Technology Commission’s Major Innovation Action Project(17411952400)~~
文摘In recent years,artificial intelligence (AI) has developed rapidly in the field of medical imaging.However,the collaborations among hospitals,research institutes and enterprises are insufficient at the present,and there are various issues in technological transformation and value landing of products in this area.To solve the core problems in the developmental path of medical imaging AI,the Chinese Innovative Alliance of Industry,Education,Research and Application of Artificial Intelligence for Medical Imaging compiled the White Paper on Medical Image AI in China.This article introduces the current status of collaboration,the clinical demands for medical imaging AI technique,and the key points in AI technology transformation:robustness,usability and security.We are facing challenges of lacking industry standards,data desensitization standard,assessment system,as well as corresponding regulations and policies to realize the application values of AI products in medical imaging.Further development of AI in medical imaging requires breakthroughs of the core algorithm,deep involvement of doctors,input from capitals,patience from societies,and most importantly,the resolutions from government for multiple difficulties in links of landing the technology.
文摘How to explore and exploit the full potential of artificial intelligence(AI)technologies in future wireless communications such as beyond 5G(B5G)and 6G is an extremely hot inter-disciplinary research topic around the world.On the one hand,AI empowers intelligent resource management for wireless communications through powerful learning and automatic adaptation capabilities.On the other hand,embracing AI in wireless communication resource management calls for new network architecture and system models as well as standardized interfaces/protocols/data formats to facilitate the large-scale deployment of AI in future B5G/6G networks.This paper reviews the state-of-art AI-empowered resource management from the framework perspective down to the methodology perspective,not only considering the radio resource(e.g.,spectrum)management but also other types of resources such as computing and caching.We also discuss the challenges and opportunities for AI-based resource management to widely deploy AI in future wireless communication networks.
基金supported by the National Natural Science Foundation of China(52003253 and 52103308)the China Postdoctoral Science Foundation(2020M672283).
文摘As an indispensable branch of wearable electronics,flexible pressure sensors are gaining tremendous attention due to their extensive applications in health monitoring,human-machine interaction,artificial intelligence,the internet of things,and other fields.In recent years,highly flexible and wearable pressure sensors have been developed using various materials/structures and transduction mechanisms.Morphological engineering of sensing materials at the nanometer and micrometer scales is crucial to obtaining superior sensor performance.This review focuses on the rapid development of morphological engineering technologies for flexible pressure sensors.We discuss different architectures and morphological designs of sensing materials to achieve high performance,including high sensitivity,broad working range,stable sensing,low hysteresis,high transparency,and directional or selective sensing.Additionally,the general fabrication techniques are summarized,including self-assembly,patterning,and auxiliary synthesis methods.Furthermore,we present the emerging applications of high-performing microengineered pressure sensors in healthcare,smart homes,digital sports,security monitoring,and machine learning-enabled computational sensing platform.Finally,the potential challenges and prospects for the future developments of pressure sensors are discussed comprehensively.
基金Defence Research and Development Canada,Program Activity PEOPLE_014.
文摘Artificial intelligence(AI),a branch of machine learning(ML)has been increasingly employed in the research of trauma in various aspects.Hemorrhage is the most common cause of trauma-related death.To better elucidate the current role of AI and contribute to future development of ML in trauma care,we conducted a review focused on the use of ML in the diagnosis or treatment strategy of traumatic hemorrhage.A literature search was carried out on PubMed and Google scholar.Titles and abstracts were screened and,if deemed appropriate,the full articles were reviewed.We included 89 studies in the review.These studies could be grouped into five areas:(1)prediction of outcomes;(2)risk assessment and injury severity for triage;(3)prediction of transfusions;(4)detection of hemorrhage;and(5)prediction of coagulopathy.Performance analysis of ML in comparison with current standards for trauma care showed that most studies demonstrated the benefits of ML models.However,most studies were retrospective,focused on prediction of mortality,and development of patient outcome scoring systems.Few studies performed model assessment via test datasets obtained from different sources.Prediction models for transfusions and coagulopathy have been developed,but none is in widespread use.AI-enabled ML-driven technology is becoming integral part of the whole course of trauma care.Comparison and application of ML algorithms using different datasets from initial training,testing and validation in prospective and randomized controlled trials are warranted for provision of decision support for individualized patient care as far forward as possible.
文摘Background:Deep Learning Algorithms(DLA)have become prominent as an application of Artificial Intelligence(Al)Techniques since 2010.This paper introduces the DLA to predict the relationships between individual tree height(ITH)and the diameter at breast height(DBH).Methods:A set of 2024 pairs of individual height and diameter at breast height measurements,originating from 150 sample plots located in stands of even aged and pure Anatolian Crimean Pine(Pinus nigra J.F.Arnold ssp.pallasiana(Lamb.)Holmboe)in Konya Forest Enterprise.The present study primarily investigated the capability and usability of DLA models for predicting the relationships between the ITH and the DBH sampled from some stands with different growth structures.The 80 different DLA models,which involve different the alternatives for the numbers of hidden layers and neuron,have been trained and compared to determine optimum and best predictive DLAs network structure.Results:It was determined that the DLA model with 9 layers and 100 neurons has been the best predictive network model compared as those by other different DLA,Artificial Neural Network,Nonlinear Regression and Nonlinear Mixed Effect models.The alternative of 100#neurons and 9#hidden layers in deep learning algorithms resulted in best predictive ITH values with root mean squared error(RMSE,0.5575),percent of the root mean squared error(RMSE%,4.9504%),Akaike information criterion(AIC,-998.9540),Bayesian information criterion(BIC,884.6591),fit index(Fl,0.9436),average absolute error(AAE,0.4077),maximum absolute error(max.AE,2.5106),Bias(0.0057)and percent Bias(Bias%,0.0502%).In addition,these predictive results with DLAs were further validated by the Equivalence tests that showed the DLA models successfully predicted the tree height in the independent dataset.Conclusion:This study has emphasized the capability of the DLA models,novel artificial intelligence technique,for predicting the relationships between individual tree height and the diameter at breast height that can be required information for the management of forests.