Antimicrobial resistance is a global public health threat,and the World Health Organization(WHO)has announced a priority list of the most threatening pathogens against which novel antibiotics need to be developed.The ...Antimicrobial resistance is a global public health threat,and the World Health Organization(WHO)has announced a priority list of the most threatening pathogens against which novel antibiotics need to be developed.The discovery and introduction of novel antibiotics are time-consuming and expensive.According to WHO’s report of antibacterial agents in clinical development,only 18 novel antibiotics have been approved since 2014.Therefore,novel antibiotics are critically needed.Artificial intelligence(AI)has been rapidly applied to drug development since its recent technical breakthrough and has dramatically improved the efficiency of the discovery of novel antibiotics.Here,we first summarized recently marketed novel antibiotics,and antibiotic candidates in clinical development.In addition,we systematically reviewed the involvement of AI in antibacterial drug development and utilization,including small molecules,antimicrobial peptides,phage therapy,essential oils,as well as resistance mechanism prediction,and antibiotic stewardship.展开更多
In recent years,the global surge of High-speed Railway(HSR)revolutionized ground transportation,providing secure,comfortable,and punctual services.The next-gen HSR,fueled by emerging services like video surveillance,e...In recent years,the global surge of High-speed Railway(HSR)revolutionized ground transportation,providing secure,comfortable,and punctual services.The next-gen HSR,fueled by emerging services like video surveillance,emergency communication,and real-time scheduling,demands advanced capabilities in real-time perception,automated driving,and digitized services,which accelerate the integration and application of Artificial Intelligence(AI)in the HSR system.This paper first provides a brief overview of AI,covering its origin,evolution,and breakthrough applications.A comprehensive review is then given regarding the most advanced AI technologies and applications in three macro application domains of the HSR system:mechanical manufacturing and electrical control,communication and signal control,and transportation management.The literature is categorized and compared across nine application directions labeled as intelligent manufacturing of trains and key components,forecast of railroad maintenance,optimization of energy consumption in railroads and trains,communication security,communication dependability,channel modeling and estimation,passenger scheduling,traffic flow forecasting,high-speed railway smart platform.Finally,challenges associated with the application of AI are discussed,offering insights for future research directions.展开更多
Amid the global wave of digital economy,China's medical artificial intelligence applications are rapidly advancing through technological innovation and policy support,while facing multifaceted evaluation and regul...Amid the global wave of digital economy,China's medical artificial intelligence applications are rapidly advancing through technological innovation and policy support,while facing multifaceted evaluation and regulatory challenges.The dynamic algorithm evolution undermines the consistency of assessment criteria,multimodal systems lack unified evaluation metrics,and conflicts persist between data sharing and privacy protection.To address these issues,the China National Health Development Research Center has established a value assessment framework for artificial intelligence medical technologies,formulated the country's first technical guideline for clinical evaluation,and validated their practicality through scenario-based pilot studies.Furthermore,this paper proposes introducing a"regulatory sandbox"model to test technical compliance in controlled environments,thereby balancing innovation incentives with risk governance.展开更多
A large amount of mobile data from growing high-speed train(HST)users makes intelligent HST communications enter the era of big data.The corresponding artificial intelligence(AI)based HST channel modeling becomes a tr...A large amount of mobile data from growing high-speed train(HST)users makes intelligent HST communications enter the era of big data.The corresponding artificial intelligence(AI)based HST channel modeling becomes a trend.This paper provides AI based channel characteristic prediction and scenario classification model for millimeter wave(mmWave)HST communications.Firstly,the ray tracing method verified by measurement data is applied to reconstruct four representative HST scenarios.By setting the positions of transmitter(Tx),receiver(Rx),and other parameters,the multi-scenarios wireless channel big data is acquired.Then,based on the obtained channel database,radial basis function neural network(RBF-NN)and back propagation neural network(BP-NN)are trained for channel characteristic prediction and scenario classification.Finally,the channel characteristic prediction and scenario classification capabilities of the network are evaluated by calculating the root mean square error(RMSE).The results show that RBF-NN can generally achieve better performance than BP-NN,and is more applicable to prediction of HST scenarios.展开更多
The present study aimed to explore the potential of artificial intelligence(AI)methodology based on magnetic resonance(MR)images to aid in the management of prostate cancer(PCa).To this end,we reviewed and summarized ...The present study aimed to explore the potential of artificial intelligence(AI)methodology based on magnetic resonance(MR)images to aid in the management of prostate cancer(PCa).To this end,we reviewed and summarized the studies comparing the diagnostic and predictive performance for PCa between AI and common clinical assessment methods based on MR images and/or clinical characteristics,thereby investigating whether AI methods are generally superior to common clinical assessment methods for the diagnosis and prediction fields of PCa.First,we found that,in the included studies of the present study,AI methods were generally equal to or better than the clinical assessment methods for the risk assessment of PCa,such as risk stratification of prostate lesions and the prediction of therapeutic outcomes or PCa progression.In particular,for the diagnosis of clinically significant PCa,the AI methods achieved a higher summary receiver operator characteristic curve(SROC-AUC)than that of the clinical assessment methods(0.87 vs.0.82).For the prediction of adverse pathology,the AI methods also achieved a higher SROC-AUC than that of the clinical assessment methods(0.86 vs.0.75).Second,as revealed by the radiomics quality score(RQS),the studies included in the present study presented a relatively high total average RQS of 15.2(11.0–20.0).Further,the scores of the individual RQS elements implied that the AI models in these studies were constructed with relatively perfect and standard radiomics processes,but the exact generalizability and clinical practicality of the AI models should be further validated using higher levels of evidence,such as prospective studies and open-testing datasets.展开更多
Purpose:The transformative impact of disruptive technologies on the restructuring of the times has attracted widespread global attention.This study aims to analyze the characteristics and shortcomings of China’s arti...Purpose:The transformative impact of disruptive technologies on the restructuring of the times has attracted widespread global attention.This study aims to analyze the characteristics and shortcomings of China’s artificial intelligence(AI)disruptive technology policy,and to put forward suggestions for optimizing China’s AI disruptive technology policy.Design/methodology/approach:Develop a three-dimensional analytical framework for“policy tools-policy actors-policy themes”and apply policy tools,social network analysis,and LDA topic model to conduct a comprehensive analysis of the utilization of policy tools,cooperative relationships among policy actors,and the trends in policy theme settings within China’s innovative AI technology policy.Findings:We find that the collaborative relationship among the policy actors of AI disruptive technology in China is insufficiently close.Marginal subjects exhibit low participation in the cooperation network and overly rely on central subjects,forming a“center-periphery”network structure.Policy tool usage is predominantly focused on supply and environmental types,with a severe inadequacy in demand-side policy tool utilization.Policy themes are diverse,encompassing topics such as“Intelligent Services”“Talent Cultivation”“Information Security”and“Technological Innovation”,which will remain focal points.Under the themes of“Intelligent Services”and“Intelligent Governance”,policy tool usage is relatively balanced,with close collaboration among policy entities.However,the theme of“AI Theoretical System”lacks a comprehensive understanding of tool usage and necessitates enhanced cooperation with other policy entities.Research limitations:The data sources and experimental scope are subject to certain limitations,potentially introducing biases and imperfections into the research results,necessitating further validation and refinement.Practical implications:The study introduces a three-dimensional analysis framework for disruptive technology policy texts,which is significant for formulating and enhancing disruptive technology policies.Originality/value:This study utilizes text mining and content analysis techniques to quantitatively analyze disruptive technology policy texts.It systematically evaluates China’s AI policies quantitatively,focusing on policy tools,policy actors,policy themes.The study uncovers the characteristics and deficiencies of current AI policies,offering recommendations for formulating and enhancing disruptive technology policies.展开更多
In recent years,breakthrough has been made in the field of artificial intelligence(AI),which has also revolutionized the industry of robotics.Soft robots featured with high-level safety,less weight,lower power consump...In recent years,breakthrough has been made in the field of artificial intelligence(AI),which has also revolutionized the industry of robotics.Soft robots featured with high-level safety,less weight,lower power consumption have always been one of the research hotspots.Recently,multifunctional sensors for perception of soft robotics have been rapidly developed,while more algorithms and models of machine learning with high accuracy have been optimized and proposed.Designs of soft robots with AI have also been advanced ranging from multimodal sensing,human-machine interaction to effective actuation in robotic systems.Nonethe-less,comprehensive reviews concerning the new developments and strategies for the ingenious design of the soft robotic systems equipped with AI are rare.Here,the new development is systematically reviewed in the field of soft robots with AI.First,background and mechanisms of soft robotic systems are briefed,after which development focused on how to endow the soft robots with AI,including the aspects of feeling,thought and reaction,is illustrated.Next,applications of soft robots with AI are systematically summarized and discussed together with advanced strategies proposed for performance enhancement.Design thoughts for future intelligent soft robotics are pointed out.Finally,some perspectives are put forward.展开更多
Modern medicine is reliant on various medical imaging technologies for non-invasively observing patients’anatomy.However,the interpretation of medical images can be highly subjective and dependent on the expertise of...Modern medicine is reliant on various medical imaging technologies for non-invasively observing patients’anatomy.However,the interpretation of medical images can be highly subjective and dependent on the expertise of clinicians.Moreover,some potentially useful quantitative information in medical images,especially that which is not visible to the naked eye,is often ignored during clinical practice.In contrast,radiomics performs high-throughput feature extraction from medical images,which enables quantitative analysis of medical images and prediction of various clinical endpoints.Studies have reported that radiomics exhibits promising performance in diagnosis and predicting treatment responses and prognosis,demonstrating its potential to be a non-invasive auxiliary tool for personalized medicine.However,radiomics remains in a developmental phase as numerous technical challenges have yet to be solved,especially in feature engineering and statistical modeling.In this review,we introduce the current utility of radiomics by summarizing research on its application in the diagnosis,prognosis,and prediction of treatment responses in patients with cancer.We focus on machine learning approaches,for feature extraction and selection during feature engineering and for imbalanced datasets and multi-modality fusion during statistical modeling.Furthermore,we introduce the stability,reproducibility,and interpretability of features,and the generalizability and interpretability of models.Finally,we offer possible solutions to current challenges in radiomics research.展开更多
Artificial intelligence technology is introduced into the simulation of muzzle flow field to improve its simulation efficiency in this paper.A data-physical fusion driven framework is proposed.First,the known flow fie...Artificial intelligence technology is introduced into the simulation of muzzle flow field to improve its simulation efficiency in this paper.A data-physical fusion driven framework is proposed.First,the known flow field data is used to initialize the model parameters,so that the parameters to be trained are close to the optimal value.Then physical prior knowledge is introduced into the training process so that the prediction results not only meet the known flow field information but also meet the physical conservation laws.Through two examples,it is proved that the model under the fusion driven framework can solve the strongly nonlinear flow field problems,and has stronger generalization and expansion.The proposed model is used to solve a muzzle flow field,and the safety clearance behind the barrel side is divided.It is pointed out that the shape of the safety clearance under different launch speeds is roughly the same,and the pressure disturbance in the area within 9.2 m behind the muzzle section exceeds the safety threshold,which is a dangerous area.Comparison with the CFD results shows that the calculation efficiency of the proposed model is greatly improved under the condition of the same calculation accuracy.The proposed model can quickly and accurately simulate the muzzle flow field under various launch conditions.展开更多
Air and space is one of the most intense fields of science and technology competition for powerful countries.This paper focuses on the competition to achieve mastery of air and space,and analyzes the impact of fast de...Air and space is one of the most intense fields of science and technology competition for powerful countries.This paper focuses on the competition to achieve mastery of air and space,and analyzes the impact of fast developing intelligent technologies from six basic contradictions of the war,including hiding and finding,understanding and confusion,network resilience and network degradation,hitting and intercepting,speed of action and decisionmaking,and shaping the perceptions of key crowd.On this basis,aiming at securing competitive advantage in the future,the development directions of intelligent technologies are proposed for the air and space competition.展开更多
AI development has brought great success to upgrading the information age.At the same time,the large-scale artificial neural network for building AI systems is thirsty for computing power,which is barely satisfied by ...AI development has brought great success to upgrading the information age.At the same time,the large-scale artificial neural network for building AI systems is thirsty for computing power,which is barely satisfied by the conventional computing hardware.In the post-Moore era,the increase in computing power brought about by the size reduction of CMOS in very large-scale integrated circuits(VLSIC)is challenging to meet the growing demand for AI computing power.To address the issue,technical approaches like neuromorphic computing attract great attention because of their feature of breaking Von-Neumann architecture,and dealing with AI algorithms much more parallelly and energy efficiently.Inspired by the human neural network architecture,neuromorphic computing hardware is brought to life based on novel artificial neurons constructed by new materials or devices.Although it is relatively difficult to deploy a training process in the neuromorphic architecture like spiking neural network(SNN),the development in this field has incubated promising technologies like in-sensor computing,which brings new opportunities for multidisciplinary research,including the field of optoelectronic materials and devices,artificial neural networks,and microelectronics integration technology.The vision chips based on the architectures could reduce unnecessary data transfer and realize fast and energy-efficient visual cognitive processing.This paper reviews firstly the architectures and algorithms of SNN,and artificial neuron devices supporting neuromorphic computing,then the recent progress of in-sensor computing vision chips,which all will promote the development of AI.展开更多
The primary objective of the present literature review is to provide a constructive and systematical discussion based on the relevant development,unsolved issues,gaps,and misconceptions in the literature regarding the...The primary objective of the present literature review is to provide a constructive and systematical discussion based on the relevant development,unsolved issues,gaps,and misconceptions in the literature regarding the fields of study that are building blocks of artificial intelligence-aided life extension assessment for offshore wind turbine support structures.The present review aims to set up the needed guidelines to develop a multi-disciplinary framework for life extension management and certification of the support structures for offshore wind turbines using artificial intelligence.The main focus of the literature review centres around the intelligent risk-based life extension management of offshore wind turbine support structures.In this regard,big data analytics,advanced signal processing techniques,supervised and unsupervised machine learning methods are discussed within the structural health monitoring and condition-based maintenance planning,the development of digital twins.Furthermore,the present review discusses the critical failure mechanisms affecting the structural condition,such as high-cycle fatigue,low-cycle fatigue,fracture,ultimate strength,and corrosion,considering deterministic and probabilistic approaches.展开更多
基金supported by the National Natural Science Foundation of China(32300157)the Shanghai Municipal Science and Technology Commission(19411964900)+1 种基金the Major Research and Development Project of Innovative Drugs,Ministry of Science and Technology of China(2017ZX09304005)the Wellcome Trust.
文摘Antimicrobial resistance is a global public health threat,and the World Health Organization(WHO)has announced a priority list of the most threatening pathogens against which novel antibiotics need to be developed.The discovery and introduction of novel antibiotics are time-consuming and expensive.According to WHO’s report of antibacterial agents in clinical development,only 18 novel antibiotics have been approved since 2014.Therefore,novel antibiotics are critically needed.Artificial intelligence(AI)has been rapidly applied to drug development since its recent technical breakthrough and has dramatically improved the efficiency of the discovery of novel antibiotics.Here,we first summarized recently marketed novel antibiotics,and antibiotic candidates in clinical development.In addition,we systematically reviewed the involvement of AI in antibacterial drug development and utilization,including small molecules,antimicrobial peptides,phage therapy,essential oils,as well as resistance mechanism prediction,and antibiotic stewardship.
基金supported by the National Natural Science Foundation of China(62172033).
文摘In recent years,the global surge of High-speed Railway(HSR)revolutionized ground transportation,providing secure,comfortable,and punctual services.The next-gen HSR,fueled by emerging services like video surveillance,emergency communication,and real-time scheduling,demands advanced capabilities in real-time perception,automated driving,and digitized services,which accelerate the integration and application of Artificial Intelligence(AI)in the HSR system.This paper first provides a brief overview of AI,covering its origin,evolution,and breakthrough applications.A comprehensive review is then given regarding the most advanced AI technologies and applications in three macro application domains of the HSR system:mechanical manufacturing and electrical control,communication and signal control,and transportation management.The literature is categorized and compared across nine application directions labeled as intelligent manufacturing of trains and key components,forecast of railroad maintenance,optimization of energy consumption in railroads and trains,communication security,communication dependability,channel modeling and estimation,passenger scheduling,traffic flow forecasting,high-speed railway smart platform.Finally,challenges associated with the application of AI are discussed,offering insights for future research directions.
文摘Amid the global wave of digital economy,China's medical artificial intelligence applications are rapidly advancing through technological innovation and policy support,while facing multifaceted evaluation and regulatory challenges.The dynamic algorithm evolution undermines the consistency of assessment criteria,multimodal systems lack unified evaluation metrics,and conflicts persist between data sharing and privacy protection.To address these issues,the China National Health Development Research Center has established a value assessment framework for artificial intelligence medical technologies,formulated the country's first technical guideline for clinical evaluation,and validated their practicality through scenario-based pilot studies.Furthermore,this paper proposes introducing a"regulatory sandbox"model to test technical compliance in controlled environments,thereby balancing innovation incentives with risk governance.
基金supported by the National Key R&D Program of China under Grant 2021YFB1407001the National Natural Science Foundation of China (NSFC) under Grants 62001269 and 61960206006+2 种基金the State Key Laboratory of Rail Traffic Control and Safety (under Grants RCS2022K009)Beijing Jiaotong University, the Future Plan Program for Young Scholars of Shandong Universitythe EU H2020 RISE TESTBED2 project under Grant 872172
文摘A large amount of mobile data from growing high-speed train(HST)users makes intelligent HST communications enter the era of big data.The corresponding artificial intelligence(AI)based HST channel modeling becomes a trend.This paper provides AI based channel characteristic prediction and scenario classification model for millimeter wave(mmWave)HST communications.Firstly,the ray tracing method verified by measurement data is applied to reconstruct four representative HST scenarios.By setting the positions of transmitter(Tx),receiver(Rx),and other parameters,the multi-scenarios wireless channel big data is acquired.Then,based on the obtained channel database,radial basis function neural network(RBF-NN)and back propagation neural network(BP-NN)are trained for channel characteristic prediction and scenario classification.Finally,the channel characteristic prediction and scenario classification capabilities of the network are evaluated by calculating the root mean square error(RMSE).The results show that RBF-NN can generally achieve better performance than BP-NN,and is more applicable to prediction of HST scenarios.
基金supported by the Natural Science Foundation of Beijing(Z200027)the National Natural Science Foundation of China(62027901,81930053)the Key-Area Research and Development Program of Guangdong Province(2021B0101420005).
文摘The present study aimed to explore the potential of artificial intelligence(AI)methodology based on magnetic resonance(MR)images to aid in the management of prostate cancer(PCa).To this end,we reviewed and summarized the studies comparing the diagnostic and predictive performance for PCa between AI and common clinical assessment methods based on MR images and/or clinical characteristics,thereby investigating whether AI methods are generally superior to common clinical assessment methods for the diagnosis and prediction fields of PCa.First,we found that,in the included studies of the present study,AI methods were generally equal to or better than the clinical assessment methods for the risk assessment of PCa,such as risk stratification of prostate lesions and the prediction of therapeutic outcomes or PCa progression.In particular,for the diagnosis of clinically significant PCa,the AI methods achieved a higher summary receiver operator characteristic curve(SROC-AUC)than that of the clinical assessment methods(0.87 vs.0.82).For the prediction of adverse pathology,the AI methods also achieved a higher SROC-AUC than that of the clinical assessment methods(0.86 vs.0.75).Second,as revealed by the radiomics quality score(RQS),the studies included in the present study presented a relatively high total average RQS of 15.2(11.0–20.0).Further,the scores of the individual RQS elements implied that the AI models in these studies were constructed with relatively perfect and standard radiomics processes,but the exact generalizability and clinical practicality of the AI models should be further validated using higher levels of evidence,such as prospective studies and open-testing datasets.
基金supported by the National Social Science Foundation of China(Grant No.22BTQ089).
文摘Purpose:The transformative impact of disruptive technologies on the restructuring of the times has attracted widespread global attention.This study aims to analyze the characteristics and shortcomings of China’s artificial intelligence(AI)disruptive technology policy,and to put forward suggestions for optimizing China’s AI disruptive technology policy.Design/methodology/approach:Develop a three-dimensional analytical framework for“policy tools-policy actors-policy themes”and apply policy tools,social network analysis,and LDA topic model to conduct a comprehensive analysis of the utilization of policy tools,cooperative relationships among policy actors,and the trends in policy theme settings within China’s innovative AI technology policy.Findings:We find that the collaborative relationship among the policy actors of AI disruptive technology in China is insufficiently close.Marginal subjects exhibit low participation in the cooperation network and overly rely on central subjects,forming a“center-periphery”network structure.Policy tool usage is predominantly focused on supply and environmental types,with a severe inadequacy in demand-side policy tool utilization.Policy themes are diverse,encompassing topics such as“Intelligent Services”“Talent Cultivation”“Information Security”and“Technological Innovation”,which will remain focal points.Under the themes of“Intelligent Services”and“Intelligent Governance”,policy tool usage is relatively balanced,with close collaboration among policy entities.However,the theme of“AI Theoretical System”lacks a comprehensive understanding of tool usage and necessitates enhanced cooperation with other policy entities.Research limitations:The data sources and experimental scope are subject to certain limitations,potentially introducing biases and imperfections into the research results,necessitating further validation and refinement.Practical implications:The study introduces a three-dimensional analysis framework for disruptive technology policy texts,which is significant for formulating and enhancing disruptive technology policies.Originality/value:This study utilizes text mining and content analysis techniques to quantitatively analyze disruptive technology policy texts.It systematically evaluates China’s AI policies quantitatively,focusing on policy tools,policy actors,policy themes.The study uncovers the characteristics and deficiencies of current AI policies,offering recommendations for formulating and enhancing disruptive technology policies.
基金supported by the Hong Kong Polytechnic University(Project No.1-WZ1Y).
文摘In recent years,breakthrough has been made in the field of artificial intelligence(AI),which has also revolutionized the industry of robotics.Soft robots featured with high-level safety,less weight,lower power consumption have always been one of the research hotspots.Recently,multifunctional sensors for perception of soft robotics have been rapidly developed,while more algorithms and models of machine learning with high accuracy have been optimized and proposed.Designs of soft robots with AI have also been advanced ranging from multimodal sensing,human-machine interaction to effective actuation in robotic systems.Nonethe-less,comprehensive reviews concerning the new developments and strategies for the ingenious design of the soft robotic systems equipped with AI are rare.Here,the new development is systematically reviewed in the field of soft robots with AI.First,background and mechanisms of soft robotic systems are briefed,after which development focused on how to endow the soft robots with AI,including the aspects of feeling,thought and reaction,is illustrated.Next,applications of soft robots with AI are systematically summarized and discussed together with advanced strategies proposed for performance enhancement.Design thoughts for future intelligent soft robotics are pointed out.Finally,some perspectives are put forward.
基金supported in part by the National Natural Science Foundation of China(82072019)the Shenzhen Basic Research Program(JCYJ20210324130209023)+5 种基金the Shenzhen-Hong Kong-Macao S&T Program(Category C)(SGDX20201103095002019)the Mainland-Hong Kong Joint Funding Scheme(MHKJFS)(MHP/005/20),the Project of Strategic Importance Fund(P0035421)the Projects of RISA(P0043001)from the Hong Kong Polytechnic University,the Natural Science Foundation of Jiangsu Province(BK20201441)the Provincial and Ministry Co-constructed Project of Henan Province Medical Science and Technology Research(SBGJ202103038,SBGJ202102056)the Henan Province Key R&D and Promotion Project(Science and Technology Research)(222102310015)the Natural Science Foundation of Henan Province(222300420575),and the Henan Province Science and Technology Research(222102310322).
文摘Modern medicine is reliant on various medical imaging technologies for non-invasively observing patients’anatomy.However,the interpretation of medical images can be highly subjective and dependent on the expertise of clinicians.Moreover,some potentially useful quantitative information in medical images,especially that which is not visible to the naked eye,is often ignored during clinical practice.In contrast,radiomics performs high-throughput feature extraction from medical images,which enables quantitative analysis of medical images and prediction of various clinical endpoints.Studies have reported that radiomics exhibits promising performance in diagnosis and predicting treatment responses and prognosis,demonstrating its potential to be a non-invasive auxiliary tool for personalized medicine.However,radiomics remains in a developmental phase as numerous technical challenges have yet to be solved,especially in feature engineering and statistical modeling.In this review,we introduce the current utility of radiomics by summarizing research on its application in the diagnosis,prognosis,and prediction of treatment responses in patients with cancer.We focus on machine learning approaches,for feature extraction and selection during feature engineering and for imbalanced datasets and multi-modality fusion during statistical modeling.Furthermore,we introduce the stability,reproducibility,and interpretability of features,and the generalizability and interpretability of models.Finally,we offer possible solutions to current challenges in radiomics research.
基金Supported by the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20210347)Supported by the National Natural Science Foundation of China(Grant No.U2141246).
文摘Artificial intelligence technology is introduced into the simulation of muzzle flow field to improve its simulation efficiency in this paper.A data-physical fusion driven framework is proposed.First,the known flow field data is used to initialize the model parameters,so that the parameters to be trained are close to the optimal value.Then physical prior knowledge is introduced into the training process so that the prediction results not only meet the known flow field information but also meet the physical conservation laws.Through two examples,it is proved that the model under the fusion driven framework can solve the strongly nonlinear flow field problems,and has stronger generalization and expansion.The proposed model is used to solve a muzzle flow field,and the safety clearance behind the barrel side is divided.It is pointed out that the shape of the safety clearance under different launch speeds is roughly the same,and the pressure disturbance in the area within 9.2 m behind the muzzle section exceeds the safety threshold,which is a dangerous area.Comparison with the CFD results shows that the calculation efficiency of the proposed model is greatly improved under the condition of the same calculation accuracy.The proposed model can quickly and accurately simulate the muzzle flow field under various launch conditions.
文摘Air and space is one of the most intense fields of science and technology competition for powerful countries.This paper focuses on the competition to achieve mastery of air and space,and analyzes the impact of fast developing intelligent technologies from six basic contradictions of the war,including hiding and finding,understanding and confusion,network resilience and network degradation,hitting and intercepting,speed of action and decisionmaking,and shaping the perceptions of key crowd.On this basis,aiming at securing competitive advantage in the future,the development directions of intelligent technologies are proposed for the air and space competition.
基金Project supported in part by the National Key Research and Development Program of China(Grant No.2021YFA0716400)the National Natural Science Foundation of China(Grant Nos.62225405,62150027,61974080,61991443,61975093,61927811,61875104,62175126,and 62235011)+2 种基金the Ministry of Science and Technology of China(Grant Nos.2021ZD0109900 and 2021ZD0109903)the Collaborative Innovation Center of Solid-State Lighting and Energy-Saving ElectronicsTsinghua University Initiative Scientific Research Program.
文摘AI development has brought great success to upgrading the information age.At the same time,the large-scale artificial neural network for building AI systems is thirsty for computing power,which is barely satisfied by the conventional computing hardware.In the post-Moore era,the increase in computing power brought about by the size reduction of CMOS in very large-scale integrated circuits(VLSIC)is challenging to meet the growing demand for AI computing power.To address the issue,technical approaches like neuromorphic computing attract great attention because of their feature of breaking Von-Neumann architecture,and dealing with AI algorithms much more parallelly and energy efficiently.Inspired by the human neural network architecture,neuromorphic computing hardware is brought to life based on novel artificial neurons constructed by new materials or devices.Although it is relatively difficult to deploy a training process in the neuromorphic architecture like spiking neural network(SNN),the development in this field has incubated promising technologies like in-sensor computing,which brings new opportunities for multidisciplinary research,including the field of optoelectronic materials and devices,artificial neural networks,and microelectronics integration technology.The vision chips based on the architectures could reduce unnecessary data transfer and realize fast and energy-efficient visual cognitive processing.This paper reviews firstly the architectures and algorithms of SNN,and artificial neuron devices supporting neuromorphic computing,then the recent progress of in-sensor computing vision chips,which all will promote the development of AI.
文摘The primary objective of the present literature review is to provide a constructive and systematical discussion based on the relevant development,unsolved issues,gaps,and misconceptions in the literature regarding the fields of study that are building blocks of artificial intelligence-aided life extension assessment for offshore wind turbine support structures.The present review aims to set up the needed guidelines to develop a multi-disciplinary framework for life extension management and certification of the support structures for offshore wind turbines using artificial intelligence.The main focus of the literature review centres around the intelligent risk-based life extension management of offshore wind turbine support structures.In this regard,big data analytics,advanced signal processing techniques,supervised and unsupervised machine learning methods are discussed within the structural health monitoring and condition-based maintenance planning,the development of digital twins.Furthermore,the present review discusses the critical failure mechanisms affecting the structural condition,such as high-cycle fatigue,low-cycle fatigue,fracture,ultimate strength,and corrosion,considering deterministic and probabilistic approaches.