期刊文献+
共找到877篇文章
< 1 2 44 >
每页显示 20 50 100
Improved multi-objective artificial bee colony algorithm for optimal power flow problem 被引量:1
1
作者 马连博 胡琨元 +1 位作者 朱云龙 陈瀚宁 《Journal of Central South University》 SCIE EI CAS 2014年第11期4220-4227,共8页
The artificial bee colony(ABC) algorithm is improved to construct a hybrid multi-objective ABC algorithm, called HMOABC, for resolving optimal power flow(OPF) problem by simultaneously optimizing three conflicting obj... The artificial bee colony(ABC) algorithm is improved to construct a hybrid multi-objective ABC algorithm, called HMOABC, for resolving optimal power flow(OPF) problem by simultaneously optimizing three conflicting objectives of OPF, instead of transforming multi-objective functions into a single objective function. The main idea of HMOABC is to extend original ABC algorithm to multi-objective and cooperative mode by combining the Pareto dominance and divide-and-conquer approach. HMOABC is then used in the 30-bus IEEE test system for solving the OPF problem considering the cost, loss, and emission impacts. The simulation results show that the HMOABC is superior to other algorithms in terms of optimization accuracy and computation robustness. 展开更多
关键词 cooperative artificial colony algorithm optimal power flow multi-objective optimization
在线阅读 下载PDF
Optimum Design of Fractional Order PID Controller for an AVR System Using an Improved Artificial Bee Colony Algorithm 被引量:15
2
作者 ZHANG Dong-Li TANG Ying-Gan GUAN Xin-Ping 《自动化学报》 EI CSCD 北大核心 2014年第5期973-980,共8页
关键词 PID控制器 优化设计 VR系统 群算法 分数阶 工蜂 自动电压调节器 搜索范围
在线阅读 下载PDF
Improved artificial bee colony algorithm with mutual learning 被引量:7
3
作者 Yu Liu Xiaoxi Ling +1 位作者 Yu Liang Guanghao Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第2期265-275,共11页
The recently invented artificial bee colony (ABC) al- gorithm is an optimization algorithm based on swarm intelligence that has been used to solve many kinds of numerical function optimization problems. It performs ... The recently invented artificial bee colony (ABC) al- gorithm is an optimization algorithm based on swarm intelligence that has been used to solve many kinds of numerical function optimization problems. It performs well in most cases, however, there still exists an insufficiency in the ABC algorithm that ignores the fitness of related pairs of individuals in the mechanism of find- ing a neighboring food source. This paper presents an improved ABC algorithm with mutual learning (MutualABC) that adjusts the produced candidate food source with the higher fitness between two individuals selected by a mutual learning factor. The perfor- mance of the improved MutualABC algorithm is tested on a set of benchmark functions and compared with the basic ABC algo- rithm and some classical versions of improved ABC algorithms. The experimental results show that the MutualABC algorithm with appropriate parameters outperforms other ABC algorithms in most experiments. 展开更多
关键词 artificial bee colony (ABC) algorithm numerical func- tion optimization swarm intelligence mutual learning.
在线阅读 下载PDF
Unmanned wave glider heading model identification and control by artificial fish swarm algorithm 被引量:2
4
作者 WANG Lei-feng LIAO Yu-lei +2 位作者 LI Ye ZHANG Wei-xin PAN Kai-wen 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第9期2131-2142,共12页
We introduce the artificial fish swarm algorithm for heading motion model identification and control parameter optimization problems for the“Ocean Rambler”unmanned wave glider(UWG).First,under certain assumptions,th... We introduce the artificial fish swarm algorithm for heading motion model identification and control parameter optimization problems for the“Ocean Rambler”unmanned wave glider(UWG).First,under certain assumptions,the rigid-flexible multi-body system of the UWG was simplified as a rigid system composed of“thruster+float body”,based on which a planar motion model of the UWG was established.Second,we obtained the model parameters using an empirical method combined with parameter identification,which means that some parameters were estimated by the empirical method.In view of the specificity and importance of the heading control,heading model parameters were identified through the artificial fish swarm algorithm based on tank test data,so that we could take full advantage of the limited trial data to factually describe the dynamic characteristics of the system.Based on the established heading motion model,parameters of the heading S-surface controller were optimized using the artificial fish swarm algorithm.Heading motion comparison and maritime control experiments of the“Ocean Rambler”UWG were completed.Tank test results show high precision of heading motion prediction including heading angle and yawing angular velocity.The UWG shows good control performance in tank tests and sea trials.The efficiency of the proposed method is verified. 展开更多
关键词 unmanned wave glider artificial fish swarm algorithm heading model parameters identification control parameters optimization
在线阅读 下载PDF
Improved wavelet neural network combined with particle swarm optimization algorithm and its application 被引量:1
5
作者 李翔 杨尚东 +1 位作者 乞建勋 杨淑霞 《Journal of Central South University of Technology》 2006年第3期256-259,共4页
An improved wavelet neural network algorithm which combines with particle swarm optimization was proposed to avoid encountering the curse of dimensionality and overcome the shortage in the responding speed and learnin... An improved wavelet neural network algorithm which combines with particle swarm optimization was proposed to avoid encountering the curse of dimensionality and overcome the shortage in the responding speed and learning ability brought about by the traditional models. Based on the operational data provided by a regional power grid in the south of China, the method was used in the actual short term load forecasting. The results show that the average time cost of the proposed method in the experiment process is reduced by 12.2 s, and the precision of the proposed method is increased by 3.43% compared to the traditional wavelet network. Consequently, the improved wavelet neural network forecasting model is better than the traditional wavelet neural network forecasting model in both forecasting effect and network function. 展开更多
关键词 artificial neural network particle swarm optimization algorithm short-term load forecasting WAVELET curse of dimensionality
在线阅读 下载PDF
Study of Direction Probability and Algorithm of Improved Marriage in Honey Bees Optimization for Weapon Network System 被引量:2
6
作者 杨晨光 涂序彦 陈杰 《Defence Technology(防务技术)》 SCIE EI CAS 2009年第2期152-157,共6页
To solve the weapon network system optimization problem against small raid objects with low attitude,the concept of direction probability and a new evaluation index system are proposed.By calculating the whole damagin... To solve the weapon network system optimization problem against small raid objects with low attitude,the concept of direction probability and a new evaluation index system are proposed.By calculating the whole damaging probability that changes with the defending angle,the efficiency of the whole weapon network system can be subtly described.With such method,we can avoid the inconformity of the description obtained from the traditional index systems.Three new indexes are also proposed,i.e.join index,overlap index and cover index,which help manage the relationship among several sub-weapon-networks.By normalizing the computation results with the Sigmoid function,the matching problem between the optimization algorithm and indexes is well settled.Also,the algorithm of improved marriage in honey bees optimization that proposed in our previous work is applied to optimize the embattlement problem.Simulation is carried out to show the efficiency of the proposed indexes and the optimization algorithm. 展开更多
关键词 网络系统 优化问题 破坏概率 算法改进 核武器 蜜蜂 婚姻 SIGMOID函数
在线阅读 下载PDF
Hybrid anti-prematuration optimization algorithm
7
作者 Qiaoling Wang Xiaozhi Gao +1 位作者 Changhong Wang Furong Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第3期503-508,共6页
Heuristic optimization methods provide a robust and efficient approach to solving complex optimization problems.This paper presents a hybrid optimization technique combining two heuristic optimization methods,artifici... Heuristic optimization methods provide a robust and efficient approach to solving complex optimization problems.This paper presents a hybrid optimization technique combining two heuristic optimization methods,artificial immune system(AIS) and particle swarm optimization(PSO),together in searching for the global optima of nonlinear functions.The proposed algorithm,namely hybrid anti-prematuration optimization method,contains four significant operators,i.e.swarm operator,cloning operator,suppression operator,and receptor editing operator.The swarm operator is inspired by the particle swarm intelligence,and the clone operator,suppression operator,and receptor editing operator are gleaned by the artificial immune system.The simulation results of three representative nonlinear test functions demonstrate the superiority of the hybrid optimization algorithm over the conventional methods with regard to both the solution quality and convergence rate.It is also employed to cope with a real-world optimization problem. 展开更多
关键词 hybrid optimization algorithm artificial immune system(AIS) particle swarm optimization(PSO) clonal selection anti-prematuration.
在线阅读 下载PDF
Immune response-based algorithm for optimization of dynamic environments
8
作者 史旭华 钱锋 《Journal of Central South University》 SCIE EI CAS 2011年第5期1563-1571,共9页
A novel immune algorithm suitable for dynamic environments (AIDE) was proposed based on a biological immune response principle.The dynamic process of artificial immune response with operators such as immune cloning,mu... A novel immune algorithm suitable for dynamic environments (AIDE) was proposed based on a biological immune response principle.The dynamic process of artificial immune response with operators such as immune cloning,multi-scale variation and gradient-based diversity was modeled.Because the immune cloning operator was derived from a stimulation and suppression effect between antibodies and antigens,a sigmoid model that can clearly describe clonal proliferation was proposed.In addition,with the introduction of multiple populations and multi-scale variation,the algorithm can well maintain the population diversity during the dynamic searching process.Unlike traditional artificial immune algorithms,which require randomly generated cells added to the current population to explore its fitness landscape,AIDE uses a gradient-based diversity operator to speed up the optimization in the dynamic environments.Several reported algorithms were compared with AIDE by using Moving Peaks Benchmarks.Preliminary experiments show that AIDE can maintain high population diversity during the search process,simultaneously can speed up the optimization.Thus,AIDE is useful for the optimization of dynamic environments. 展开更多
关键词 dynamic optimization artificial immune algorithms immune response multi-scale variation
在线阅读 下载PDF
Hybrid optimization of dynamic deployment for networked fire control system 被引量:7
9
作者 Chen Chen Jie Chen Bin Xin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第6期954-961,共8页
With applying the information technology to the military field, the advantages and importance of the networked combat are more and more obvious. In order to make full use of limited battlefield resources and maximally... With applying the information technology to the military field, the advantages and importance of the networked combat are more and more obvious. In order to make full use of limited battlefield resources and maximally destroy enemy targets from arbitrary angle in a limited time, the research on firepower nodes dynamic deployment becomes a key problem of command and control. Considering a variety of tactical indexes and actual constraints in air defense, a mathematical model is formulated to minimize the enemy target penetration probability. Based on characteristics of the mathematical model and demands of the deployment problems, an assistance-based algorithm is put forward which combines the artificial potential field (APF) method with a memetic algorithm. The APF method is employed to solve the constraint handling problem and generate feasible solutions. The constrained optimization problem transforms into an optimization problem of APF parameters adjustment, and the dimension of the problem is reduced greatly. The dynamic deployment is accomplished by generation and refinement of feasible solutions. The simulation results show that the proposed algorithm is effective and feasible in dynamic situation. 展开更多
关键词 deployment optimization artificial potential field (APF) constraint handling generation of feasible solutions memetic algorithm
在线阅读 下载PDF
Optimal fuzzy PID controller with adjustable factors based on flexible polyhedron search algorithm 被引量:2
10
作者 谭冠政 肖宏峰 王越超 《Journal of Central South University of Technology》 EI 2002年第2期128-133,共6页
A new kind of optimal fuzzy PID controller is proposed, which contains two parts. One is an on line fuzzy inference system, and the other is a conventional PID controller. In the fuzzy inference system, three adjustab... A new kind of optimal fuzzy PID controller is proposed, which contains two parts. One is an on line fuzzy inference system, and the other is a conventional PID controller. In the fuzzy inference system, three adjustable factors x p, x i , and x d are introduced. Their functions are to further modify and optimize the result of the fuzzy inference so as to make the controller have the optimal control effect on a given object. The optimal values of these adjustable factors are determined based on the ITAE criterion and the Nelder and Mead′s flexible polyhedron search algorithm. This optimal fuzzy PID controller has been used to control the executive motor of the intelligent artificial leg designed by the authors. The result of computer simulation indicates that this controller is very effective and can be widely used to control different kinds of objects and processes. 展开更多
关键词 optimAL fuzzy inference PID controller adjustable factor flexible polyhedron search algorithm intelligent artificial leg
在线阅读 下载PDF
基于粒子群和蜂群算法的无人机路径规划 被引量:4
11
作者 刘晓芬 吴传淑 +1 位作者 张紫瑞 陈珏先 《兵工自动化》 北大核心 2025年第4期107-112,共6页
针对无人机在有威胁战场环境下的2维和3维路径规划问题,提出一种基于粒子群(particleswarm optimization,PSO)和人工蜂群(artificialbeecolony,ABC)混合算法。根据B样条可以修改局部飞行轨迹的特点,引入非均匀B样条曲线优化拐点处的路径... 针对无人机在有威胁战场环境下的2维和3维路径规划问题,提出一种基于粒子群(particleswarm optimization,PSO)和人工蜂群(artificialbeecolony,ABC)混合算法。根据B样条可以修改局部飞行轨迹的特点,引入非均匀B样条曲线优化拐点处的路径,使得到的路径更加平滑,无人机机动转弯相对更少。结果表明:该研究提高了无人机飞行的安全性和高效性,便于无人机的飞行控制跟踪实现。 展开更多
关键词 路径规划 B样条 粒子群算法 人工蜂群算法 飞行控制
在线阅读 下载PDF
终端区离场航空器自主路径规划 被引量:2
12
作者 王红勇 郭宇鹏 《北京航空航天大学学报》 北大核心 2025年第2期446-456,共11页
随着航空器自主保持间隔运行概念的逐渐发展,基于连续爬升运行(CCO)模式,可有效解决当前终端区内航空器离场路径固定单一所造成空域运行效率低问题。为此,提出一种基于人工势场-粒子群优化(APF-PSO)联合算法的终端区离场航空器自主路径... 随着航空器自主保持间隔运行概念的逐渐发展,基于连续爬升运行(CCO)模式,可有效解决当前终端区内航空器离场路径固定单一所造成空域运行效率低问题。为此,提出一种基于人工势场-粒子群优化(APF-PSO)联合算法的终端区离场航空器自主路径规划方法。构建面向航空器自主运行模式的空域环境模型,对空域环境进行栅格化处理并计算各栅格的空域复杂度,限制离场航空器进入高复杂度栅格以保障运行安全;构建基于BADA数据库和减退力爬升模式的航空器爬升性能约束模型;应用APF-PSO联合算法进行路径规划,通过粒子群优化(PSO)算法广域搜索思想解决人工势场法(APF)固有的局部极值-目标不可达问题;使用贝塞尔曲线法优化该路径,引入滑动时间窗口理念优化航空器离场时刻;使用上海终端空域的实际结构和运行数据,应用所提方法进行仿真模拟。仿真结果表明:APF-PSO联合算法可有效生成航空器无冲突离场路径并规避繁忙空域,优化处理后的路径满足航空器爬升性能约束,且优于实际运行路径(路径长度减少23.78%,最大转弯率降低55.73%,最大爬升率降低9.94%);离场航空器自主运行模式下的空中交通复杂性较当前运行模式更为均衡(栅格复杂度峰值降低3.92%),可有效提升空域利用率。 展开更多
关键词 航空运输 航空器自主运行 连续爬升运行 路径规划 人工势场-粒子群优化算法 空中交通管理
在线阅读 下载PDF
基于改进人工蜂鸟算法的装船调度优化方法
13
作者 刘文远 周如意 厉斌斌 《计算机应用研究》 北大核心 2025年第5期1462-1469,共8页
为提升散杂货进出港作业效率,减少船舶在港时间,提出一种基于改进人工蜂鸟算法的装船调度优化方法。首先,在综合考虑泊位、装船设备和堆场三部分因素相互影响的条件下,以船舶总在港时间为优化目标,构建协同调度优化模型。然后,鉴于人工... 为提升散杂货进出港作业效率,减少船舶在港时间,提出一种基于改进人工蜂鸟算法的装船调度优化方法。首先,在综合考虑泊位、装船设备和堆场三部分因素相互影响的条件下,以船舶总在港时间为优化目标,构建协同调度优化模型。然后,鉴于人工蜂鸟算法在求解离散问题的局限性,对人工蜂鸟算法进行离散化改造,进而提出一种改进型人工蜂鸟算法,引入自适应飞行参数控制蜂鸟个体的飞行方式,同时通过改进最优个体引导策略优化AHA的位置更新过程,进一步平衡AHA的全局探索与局部开发能力。为了进一步增强算法避免局部最优解的能力,引入了变异策略调整和优化蜂鸟的位置。最后,在基准测试函数上进行有效性实验,并与其他群智能优化算法进行对比,验证改进算法的寻优性能。进一步通过对散杂货港口的历史数据进行测试,采用改进算法进行求解计算,并与基础的人工蜂鸟算法进行了比较。实验结果表明,该策略缩短了船舶的在港时间,能够得出相对较优的调度方案,为港口船舶优化调度提供新方案,有一定的实际意义。 展开更多
关键词 人工蜂鸟算法 群体智能 优化 散杂货港口
在线阅读 下载PDF
改进SHO优化神经网络模型
14
作者 李健 王海瑞 +2 位作者 王增辉 付海涛 于维霖 《吉林大学学报(理学版)》 北大核心 2025年第3期835-844,共10页
针对Googlenet模型识别准确率低、敏感性不佳等问题,提出一个应用改进的海马优化(SASHO)算法超参数优化Googlenet模型.首先,利用Sobel序列和自适应权重算法对海马优化算法进行改进;其次,对比4个基础神经网络选出最适合本文数据集的Googl... 针对Googlenet模型识别准确率低、敏感性不佳等问题,提出一个应用改进的海马优化(SASHO)算法超参数优化Googlenet模型.首先,利用Sobel序列和自适应权重算法对海马优化算法进行改进;其次,对比4个基础神经网络选出最适合本文数据集的Googlenet作为基础识别模型;最后,利用改进后的SASHO算法对Googlenet模型参数进行优化,构建新模型SASHO-Googlenet.为验证SASHO-Googlenet模型的有效性,将SASHO-Googlenet模型与经过其他4个群智能算法优化的模型针对7个指标进行比较.结果表明,SASHO-Googlenet模型准确率达95.36%,敏感性达95.35%,特异性达95.39%,精度达96.47%,召回率达95.35%,f_measure达95.90%,g_mean达95.37%.实验结果表明,SASHO-Googlenet模型综合性能最佳. 展开更多
关键词 人工智能 深度学习 海马优化算法 参数优化
在线阅读 下载PDF
考虑双资源约束多转速的绿色柔性作业车间调度研究
15
作者 王玉芳 章殿清 +2 位作者 华晓麟 张毅 葛师语 《控制理论与应用》 北大核心 2025年第10期2019-2027,共9页
考虑实际生产车间机器不同转速产生能耗差异及精工序的生产需求,构建以最大完工时间和机器总能耗为优化目标的双资源约束多转速绿色柔性作业车间调度模型,并提出一种动态学习人工蜂群算法进行求解.采用混合初始化获取初始种群,提升算法... 考虑实际生产车间机器不同转速产生能耗差异及精工序的生产需求,构建以最大完工时间和机器总能耗为优化目标的双资源约束多转速绿色柔性作业车间调度模型,并提出一种动态学习人工蜂群算法进行求解.采用混合初始化获取初始种群,提升算法的进化起点.在雇佣蜂完成搜索之后,引入新蜂种学习蜂,学习优秀蜜源的基因,降低搜索的随机性,提高搜索精度,并采用Q学习算子对学习概率进行自适应优化,保证蜜源多样性的同时加强算法的全局搜索能力.跟随蜂阶段设计一种动态邻域搜索策略,加入基于变速及平衡工人工作时长的邻域结构,提高跟随蜂的局部搜索能力.通过不同算法对拓展算例的对比验证所提算法的优越性. 展开更多
关键词 双资源约束 多转速 绿色柔性车间调度 多目标优化 人工蜂群算法 Q学习
在线阅读 下载PDF
人工智能算法在滑坡监测与预测技术中的研究与应用
16
作者 程刚 吴勇飞 +1 位作者 曹德胜 吴亚熹 《地质科技通报》 北大核心 2025年第5期302-316,共15页
为减轻滑坡灾害风险,进一步保障区域可持续发展,开展有效的滑坡监测与预测研究具有重要的现实意义。通过研究滑坡监测与预测中的关键技术与方法,分析各类算法在滑坡监测与预测场景中的效率和精度,不断提升滑坡灾害防治水平。在特征提取... 为减轻滑坡灾害风险,进一步保障区域可持续发展,开展有效的滑坡监测与预测研究具有重要的现实意义。通过研究滑坡监测与预测中的关键技术与方法,分析各类算法在滑坡监测与预测场景中的效率和精度,不断提升滑坡灾害防治水平。在特征提取技术方面,对比分析了尺度不变特征变换(SIFT)、加速鲁棒特征(SURF)和自适应尺度不变特征变换(ASIFT)3种基于图像特征匹配算法的性能,其中ASIFT在匹配数量、精确率和召回率方面具有显著优势,尤其适用于准确性要求较高的复杂环境场景;在光流分析技术方面,探讨了基于Lucas-Kanade稀疏光流法和Horn-Schunck稠密光流法的应用效果,其中Lucas-Kanade稀疏光流法计算效率高,适合实时应用场景,但存在遗漏重要运动信息风险,Horn-Schunck稠密光流法能够提供全面的光流场信息,适用于环境复杂场景,但存在计算复杂度较高的不足,因而难以用于实时处理;在滑坡易发性预测方面,详细介绍了支持向量机(SVM)、决策树(DT)和随机森林(RF)等经典机器学习方法在滑坡预测中的应用优缺点,并重点研究了基于粒子群优化支持向量机(PSO-SVM)的模型性能,该模型通过优化超参数,显著提高了模型的分类准确度、泛化能力和预测精度。此外,通过引入Faster R-CNN模型,利用其先进的卷积神经网络架构,实现了复杂场景下滑坡事件的自动识别与分类,进一步提升了滑坡监测预警的效率和准确率。研究表明,ASIFT局部特征提取的精确率为0.84,Lucas-Kanade稀疏光流法的跟踪误差为0.12,PSO-SVM模型的均方根误差为0.52,Faster R-CNN模型在滑坡图像自动识别与分类方面的置信度可达0.98,综合性能较其他算法显著提升。综上所述,通过引入人工智能算法,结合多学科技术手段,全方面提升了滑坡监测与预测技术的效率和精度,研究成果为滑坡地质灾害防治提供了更有力的技术保障。 展开更多
关键词 人工智能算法 滑坡监测与预测 特征匹配 光流法 粒子群优化支持向量机(PSO-SVM)
在线阅读 下载PDF
基于BWO-BiLSTM的滚动轴承寿命分段预测方法
17
作者 王恒迪 陈鹏 +2 位作者 张文虎 吴升德 马盈丰 《轴承》 北大核心 2025年第10期77-84,共8页
针对滚动轴承退化过程呈多阶段的特点,提出一种基于黑蜘蛛寻优(BWO)算法优化双向长短时记忆网络(BiLSTM)的滚动轴承寿命分段预测方法。采用自下而上的时间序列分割算法,依照时间序列分割评价指标的分割误差最小原则将滚动轴承退化过程... 针对滚动轴承退化过程呈多阶段的特点,提出一种基于黑蜘蛛寻优(BWO)算法优化双向长短时记忆网络(BiLSTM)的滚动轴承寿命分段预测方法。采用自下而上的时间序列分割算法,依照时间序列分割评价指标的分割误差最小原则将滚动轴承退化过程划分为多个阶段。利用BWO对BiLSTM模型的隐藏层神经元个数、训练次数、学习率进行优化,从而提升BiLSTM模型的预测精度。采用XJTU-SY轴承数据集进行验证,结果表明,BWO-BiLSTM,BiLSTM,LSTM模型的均方误差分别为2.52,3.62,6.50;平均绝对误差分别为2.19,3.15,5.87;BWO-BiLSTM模型对轴承剩余使用寿命的预测结果具有更高精度。 展开更多
关键词 滚动轴承 人工神经网络 遗传优化算法 使用寿命 寿命预测
在线阅读 下载PDF
基于人工势场的虚拟编组自适应模型预测控制
18
作者 林俊亭 倪铭君 《北京航空航天大学学报》 北大核心 2025年第10期3273-3285,共13页
现今,列车高速度、高密度追踪控制对编队列车运行的安全性提出更高的要求。为满足人们对列车运行过程中自适应性和准确性的需求,提出一种基于人工势场的虚拟编组(VC)自适应模型预测控制(MPC)方法。将VC列车作为研究对象,采用MPC方法建... 现今,列车高速度、高密度追踪控制对编队列车运行的安全性提出更高的要求。为满足人们对列车运行过程中自适应性和准确性的需求,提出一种基于人工势场的虚拟编组(VC)自适应模型预测控制(MPC)方法。将VC列车作为研究对象,采用MPC方法建立基于列车平衡态的动力学模型,以控制精度和平稳性、安全性为优化目标,并将基于人工势场设置的防撞函数加入目标函数,从而实现编队的防撞控制;分析不同时域参数对系统控制精度和计算效率的影响作用,设计对应的适应度函数,基于遗传算法(GA)求得不同工况下的最优时域参数组合,并制定时域参数更新策略,在确保列车编组准确控制的同时提高系统的实时性;在MATLAB平台上搭建4列车追踪运行场景,仿真验证所提方法的有效性。结果表明:相较于传统的模型预测控制器,基于人工势场的模型预测控制器在间隔控制上准确度提高了94.8%,可有效避免列车间发生碰撞,保证了列车运行的安全性;另外,采用自适应控制律的控制器可根据列车运行状态对系统进行实时调整,在确保高控制精度的前提下,计算效率提高10%。研究结果验证了所提方法的可行性,提高了控制器的综合控制性能,并为进一步优化编队控制和保障列车安全运行提供参考。 展开更多
关键词 虚拟编组 模型预测控制 人工势场 遗传算法 列车追踪运行优化
在线阅读 下载PDF
基于WOA-IC优化神经网络的隧道爆破振动预测研究 被引量:2
19
作者 高宇璠 傅洪贤 《振动与冲击》 北大核心 2025年第4期229-237,共9页
为了提高爆破振动预测精度,提出了一种鲸鱼优化算法(whale optimization algorithm,WOA)和信息准则(information criterion,IC)优化的人工神经网络(artificial neural network,ANN)爆破振动预测模型。根据二维指标变量法将地质参数定量... 为了提高爆破振动预测精度,提出了一种鲸鱼优化算法(whale optimization algorithm,WOA)和信息准则(information criterion,IC)优化的人工神经网络(artificial neural network,ANN)爆破振动预测模型。根据二维指标变量法将地质参数定量化,建立了包括3个定量参数和10个定性参数的更完整的数据集。利用信息准则对模型复杂度的反馈,构建了一个提高模型泛化能力的双层优化结构,分析改进ANN模型的激活函数和训练算法最优组合,并引入鲸鱼算法优化模型初始权值和阈值的选取,降低模型输出结果的偏差和波动。对比分析WOA-IC-ANN模型与传统经验公式、ANN模型、IC-ANN模型、WOA-ANN模型预测结果的差异。研究表明,WOA-IC-ANN模型的预测结果与实际吻合更好,误差显著降低,具有较好的泛化能力。研究成果可用于隧道爆破工程的振动预测,并为类似工作提供借鉴和参考。 展开更多
关键词 爆破振动 预测模型 信息准则(IC) 鲸鱼优化算法(WOA) 人工神经网络(ANN)
在线阅读 下载PDF
基于离散粒子群算法的集群无人机飞行路径规划 被引量:1
20
作者 广鑫 耿增显 《现代电子技术》 北大核心 2025年第4期119-122,共4页
飞行环境可能随时发生变化,如新的障碍物出现、天气条件变化等,导致集群无人机飞行路径规划难度上升。为此,提出一种基于离散粒子群算法的集群无人机飞行路径规划方法。根据人工势场理论与威胁类型绘制Voronoi图,从而确定Voronoi图弧权... 飞行环境可能随时发生变化,如新的障碍物出现、天气条件变化等,导致集群无人机飞行路径规划难度上升。为此,提出一种基于离散粒子群算法的集群无人机飞行路径规划方法。根据人工势场理论与威胁类型绘制Voronoi图,从而确定Voronoi图弧权值。结合Voronoi图弧权值计算结果与无人机飞行航程、威胁、电池效能代价构建适应度函数,通过离散粒子群算法不断进行迭代寻优,得到集群无人机的最佳飞行路径。实验结果表明,所提方法在集群无人机路径规划中具有较高的执行效率和成功率,具有良好的实际应用前景。 展开更多
关键词 离散粒子群算法 集群无人机 路径规划 人工势场 VORONOI图 适应度函数
在线阅读 下载PDF
上一页 1 2 44 下一页 到第
使用帮助 返回顶部