Most of the existing direction of arrival(DOA)estimation algorithms are applied under the assumption that the array manifold is ideal.In practical engineering applications,the existence of non-ideal conditions such as...Most of the existing direction of arrival(DOA)estimation algorithms are applied under the assumption that the array manifold is ideal.In practical engineering applications,the existence of non-ideal conditions such as mutual coupling between array elements,array amplitude and phase errors,and array element position errors leads to defects in the array manifold,which makes the performance of the algorithm decline rapidly or even fail.In order to solve the problem of DOA estimation in the presence of amplitude and phase errors and array element position errors,this paper introduces the first-order Taylor expansion equivalent model of the received signal under the uniform linear array from the Bayesian point of view.In the solution,the amplitude and phase error parameters and the array element position error parameters are regarded as random variables obeying the Gaussian distribution.At the same time,the expectation-maximization algorithm is used to update the probability distribution parameters,and then the two error parameters are solved alternately to obtain more accurate DOA estimation results.Finally,the effectiveness of the proposed algorithm is verified by simulation and experiment.展开更多
To tackle the challenges of intractable parameter tun-ing,significant computational expenditure and imprecise model-driven sparse-based direction of arrival(DOA)estimation with array error(AE),this paper proposes a de...To tackle the challenges of intractable parameter tun-ing,significant computational expenditure and imprecise model-driven sparse-based direction of arrival(DOA)estimation with array error(AE),this paper proposes a deep unfolded amplitude-phase error self-calibration network.Firstly,a sparse-based DOA model with an array convex error restriction is established,which gets resolved via an alternating iterative minimization(AIM)algo-rithm.The algorithm is then unrolled to a deep network known as AE-AIM Network(AE-AIM-Net),where all parameters are opti-mized through multi-task learning using the constructed com-plete dataset.The results of the simulation and theoretical analy-sis suggest that the proposed unfolded network achieves lower computational costs compared to typical sparse recovery meth-ods.Furthermore,it maintains excellent estimation performance even in the presence of array magnitude-phase errors.展开更多
针对现有时间维度波达方向(direction of arrival,DOA)估计方案中,时间调控速率受限导致目标信号频谱混叠的问题,提出了一种基于异步调控的DOA估计方法,该方法能够有效提升调控速率,进而提升信号处理的信号带宽。在不改变时间调控超表面...针对现有时间维度波达方向(direction of arrival,DOA)估计方案中,时间调控速率受限导致目标信号频谱混叠的问题,提出了一种基于异步调控的DOA估计方法,该方法能够有效提升调控速率,进而提升信号处理的信号带宽。在不改变时间调控超表面(time-varying metasurface,TVM)硬件约束的情况下,该方法利用单元状态会持续一段时间的性质,交错不同列单元的变化起始时间,在一个状态持续时间内获得了多个不同的响应。异步调控方法能够使TVM在受材料限制的情况下,等效增加虚拟多通道个数,提高DOA估计的精度。仿真结果验证了方法的有效性,相较于现有的同步调控方法,新方法在DOA估计性能上有了较大提升,能够逼近理论上的最优DOA估计结果。展开更多
受恶劣电磁环境和元器件老化等因素影响,多输入多输出(Multiple-Input Multiple-Output,MIMO)雷达的天线阵元发生故障的概率增加,而阵元故障会严重降低目标波达方向(Direction of Arrival,DOA)估计性能。现有的大多数基于深度学习的DOA...受恶劣电磁环境和元器件老化等因素影响,多输入多输出(Multiple-Input Multiple-Output,MIMO)雷达的天线阵元发生故障的概率增加,而阵元故障会严重降低目标波达方向(Direction of Arrival,DOA)估计性能。现有的大多数基于深度学习的DOA估计方法未能充分利用阵列模型的先验信息,导致其建立的映射关系极为复杂,从而使得网络拟合难度较大。为此,提出一种基于先验驱动残差注意力网络的阵元故障MIMO雷达DOA估计方法。首先,利用MIMO雷达协方差矩阵的双重Toeplitz先验特性,构建了基于先验驱动的残差注意力网络,并引入残差注意力块对协方差矩阵的特征进行加权处理,旨在学习阵元故障下存在数据缺失的协方差矩阵和完整协方差矩阵生成向量之间的映射关系。然后,根据残差注意力网络输出的生成向量估计值得到完整的协方差矩阵。最后,利用RD-ESPRIT(Reduced Dimension ESPRIT)算法估计目标DOA。仿真结果表明,所提算法在阵元故障下的DOA估计性能优于现有算法,在信噪比为15 dB时,其DOA估计精度比效果最好的现有算法提高了43.26%。展开更多
为了能够准确高效地对离格信号的波达方向(Direction of Arrival, DOA)进行估计,利用卷积神经网络来提取信号协方差矩阵中的深度特征信息,并采用改进型标签策略来确保网络的估计精度和效率。具体来说,通过带小数的标签来注释协方差矩阵...为了能够准确高效地对离格信号的波达方向(Direction of Arrival, DOA)进行估计,利用卷积神经网络来提取信号协方差矩阵中的深度特征信息,并采用改进型标签策略来确保网络的估计精度和效率。具体来说,通过带小数的标签来注释协方差矩阵构成的张量,并配合上改进后的二进制交叉熵损失函数来使得所提出的小数标签能够用于网络训练。针对DOA估计对应的多标签—多分类的问题,使用了包含6层结构的卷积神经网络的输出单元类别以及幅度来分别对离格信号的DOA整数部分与小数部分进行重构。通过与6种现有典型方法的均方根误差(Root Mean Square Error, RMSE)仿真对比,所提方法能够在信噪比为-10 dB的情况下保持着RMSE<0.5°的优秀表现。虽然无法在较少快拍下正常工作,但该方法在快拍数大于8的条件下仍然保持着RMSE<1°的表现性能。同时,在信号数量为5时,所提方法依然具有较高的估计稳定性,且计算速度能够达到毫秒级,用时明显低于其他方法。展开更多
针对主动声呐在水下环境对目标方位估计受低信噪比影响的问题,提出了一种基于分数阶傅里叶变换(Fractional Fourier Transform,FrFT)改进迭代自适应法的波达方向(Direction of Arrival,DOA)估计多波束声呐成像方法。首先对水听器收到的...针对主动声呐在水下环境对目标方位估计受低信噪比影响的问题,提出了一种基于分数阶傅里叶变换(Fractional Fourier Transform,FrFT)改进迭代自适应法的波达方向(Direction of Arrival,DOA)估计多波束声呐成像方法。首先对水听器收到的回波信号进行FrFT,通过FrFT预处理将宽带线性调频(Linear Frequency Modulation,LFM)信号变换为分数域的窄带信号,避免了交叉干扰项的影响;然后在FrFT域对LFM信号进行聚焦并对噪声进行抑制;最后在FrFT域内实现迭代自适应法,同时优化了功率谱估计方法以精确进行DOA估计。所提方法在低信噪比且不增加传感器阵元的情况下,相较于传统的DOA估计方法具有更好的估计精度与更小的均方根误差,可以显著提高成像效果。仿真结果表明,距离向的峰值旁瓣比可达到-13.364 dB,积分旁瓣比可达到-9.723 dB,方位向的峰值旁瓣比可达到-13.874 dB,积分旁瓣比可达到-10.034 dB。展开更多
In this paper, a low complexity direction of arrival(DOA) estimation method for massive uniform circular array(UCA) with single snapshot is proposed.Firstly, the coarse DOAs are estimated by finding the peaks from the...In this paper, a low complexity direction of arrival(DOA) estimation method for massive uniform circular array(UCA) with single snapshot is proposed.Firstly, the coarse DOAs are estimated by finding the peaks from the circular convolution between a fixed coefficient vector and the received data vector.Thereafter, in order to refine coarse DOA estimates, we reconstruct the direction matrix based on the coarse DOA estimations and take the first order Taylor expansion with DOA estimation offsets into account.Finally, the refined estimations are obtained by compensating the offsets, which are obtained via least squares(LS) without any complex searches.In addition, the refinement can be iteratively implemented to enhance the estimation results.Compared to the offset search method, the proposed method achieves a better estimation performance while requiring lower complexity.Numerical simulations are presented to demonstrate the effectiveness of the proposed method.展开更多
A low-complexity method for direction of arrival(DOA) estimation based on estimation signal parameters via rotational invariance technique(ESPRIT) is proposed.Instead of using the cross-correlation vectors in mult...A low-complexity method for direction of arrival(DOA) estimation based on estimation signal parameters via rotational invariance technique(ESPRIT) is proposed.Instead of using the cross-correlation vectors in multistage Wiener filter(MSWF),the orthogonal residual vectors obtained in conjugate gradient(CG) method span the signal subspace used by ESPRIT.The computational complexity of the proposed method is significantly reduced,since the signal subspace estimation mainly needs two matrixvector complex multiplications at the iteration of data level.Furthermore,the prior training data are not needed in the proposed method.To overcome performance degradation at low signal to noise ratio(SNR),the expanded signal subspace spanned by more basis vectors is used and simultaneously renders ESPRIT yield redundant DOAs,which can be excluded by performing ESPRIT once more using the unexpanded signal subspace.Compared with the traditional ESPRIT methods by MSWF and eigenvalue decomposition(EVD),numerical results demonstrate the satisfactory performance of the proposed method.展开更多
A 2D-direction of arrival estimation (DOAE) for multi input and multi-output (MIMO) radar using improved multiple temporal-spatial subspaces in estimating signal parameters via rotational invariance techniques method ...A 2D-direction of arrival estimation (DOAE) for multi input and multi-output (MIMO) radar using improved multiple temporal-spatial subspaces in estimating signal parameters via rotational invariance techniques method (TS-ESPRIT) is introduced. In order to realize the improved TS-ESPRIT, the proposed algorithm divides the planar array into multiple uniform sub-planar arrays with common reference point to get a unified phase shifts measurement point for all sub-arrays. The TS-ESPRIT is applied to each sub-array separately, and in the same time with the others to realize the parallelly temporal and spatial processing, so that it reduces the non-linearity effect of model and decreases the computational time. Then, the time difference of arrival (TDOA) technique is applied to combine the multiple sub-arrays in order to form the improved TS-ESPRIT. It is found that the proposed method achieves high accuracy at a low signal to noise ratio (SNR) with low computational complexity, leading to enhancement of the estimators performance.展开更多
A novel identification method for point source,coherently distributed(CD) source and incoherently distributed(ICD) source is proposed.The differences among the point source,CD source and ICD source are studied.Acc...A novel identification method for point source,coherently distributed(CD) source and incoherently distributed(ICD) source is proposed.The differences among the point source,CD source and ICD source are studied.According to the different characters of covariance matrix and general steering vector of the array received source,a second order blind identification method is used to separate the sources,the mixing matrix could be obtained.From the mixing matrix,the type of the source is identified by using an amplitude criterion.And the direction of arrival for the array received source is estimated by using the matching pursuit algorithm from the vectors of the mixing matrix.Computer simulations validate the efficiency of the method.展开更多
In order to solve the problem of coherent signal subspace method(CSSM) depending on the estimated accuracy of signal subspace, a new direction of arrival(DOA) estimation method of wideband source, which is based on it...In order to solve the problem of coherent signal subspace method(CSSM) depending on the estimated accuracy of signal subspace, a new direction of arrival(DOA) estimation method of wideband source, which is based on iterative adaptive spectral reconstruction, is proposed. Firstly, the wideband signals are divided into several narrowband signals of different frequency bins by discrete Fourier transformation(DFT). Then, the signal matched power spectrum in referenced frequency bins is computed, which can form the initial covariance matrix. Finally, the linear restrained minimum variance spectral(Capon spectral) of signals in other frequency bins are reconstructed using sequential iterative means, so the DOA can be estimated by the locations of spectral peaks. Theoretical analysis and simulation results show the proposed method based on the iterative spectral reconstruction for the covariance matrices of all sub-bands can avoid the problem of determining the signal subspace accurately with the coherent signal subspace method under the conditions of small samples and low signal to noise ratio(SNR), and it can also realize full dimensional focusing of different sub-band data, which can be applied to coherent sources and can significantly improve the accuracy of DOA estimation.展开更多
To estimate the direction-of-arrival (DOA) of wideband coherent signals, a new method by modifying the orthogonality of the projected suhspaces method is proposed. And it can deal with randomly position perturbed ar...To estimate the direction-of-arrival (DOA) of wideband coherent signals, a new method by modifying the orthogonality of the projected suhspaces method is proposed. And it can deal with randomly position perturbed arrays by using the Toeplitz method. This method needn't the primary information of DOA for focusing matrix and the sector dividing of interpolated method, which improving the precision of estimation and reducing the computational complexity. Simulations illustrate the effectiveness of this method.展开更多
This paper develops a deep estimator framework of deep convolution networks(DCNs)for super-resolution direction of arrival(DOA)estimation.In addition to the scenario of correlated signals,the quantization errors of th...This paper develops a deep estimator framework of deep convolution networks(DCNs)for super-resolution direction of arrival(DOA)estimation.In addition to the scenario of correlated signals,the quantization errors of the DCN are the major challenge.In our deep estimator framework,one DCN is used for spectrum estimation with quantization errors,and the remaining two DCNs are used to estimate quantization errors.We propose training our estimator using the spatial sampled covariance matrix directly as our deep estimator’s input without any feature extraction operation.Then,we reconstruct the original spatial spectrum from the spectrum estimate and quantization errors estimate.Also,the feasibility of the proposed deep estimator is analyzed in detail in this paper.Once the deep estimator is appropriately trained,it can recover the correlated signals’spatial spectrum fast and accurately.Simulation results show that our estimator performs well in both resolution and estimation error compared with the state-of-the-art algorithms.展开更多
In order to resolve direction finding problems in the impulse noise,a direction of arrival(DOA)estimation method is proposed.The proposed DOA estimation method can restrain the impulse noise by using infinite norm exp...In order to resolve direction finding problems in the impulse noise,a direction of arrival(DOA)estimation method is proposed.The proposed DOA estimation method can restrain the impulse noise by using infinite norm exponential kernel covariance matrix and obtain excellent performance via the maximumlikelihood(ML)algorithm.In order to obtain the global optimal solutions of this method,a quantum electromagnetic field optimization(QEFO)algorithm is designed.In view of the QEFO algorithm,the proposed method can resolve the difficulties of DOA estimation in the impulse noise.Comparing with some traditional DOA estimation methods,the proposed DOA estimation method shows high superiority and robustness for determining the DOA of independent and coherent sources,which has been verified via the Monte-Carlo experiments of different schemes,especially in the case of snapshot deficiency,low generalized signal to noise ratio(GSNR)and strong impulse noise.Beyond that,the Cramer-Rao bound(CRB)of angle estimation in the impulse noise and the proof of the convergence of the QEFO algorithm are provided in this paper.展开更多
In this paper, a novel direction of arrival(DOA) estimation algorithm using directional antennas in cylindrical conformal arrays(CCAs) is proposed. To eliminate the shadow effect, we divide the CCAs into several subar...In this paper, a novel direction of arrival(DOA) estimation algorithm using directional antennas in cylindrical conformal arrays(CCAs) is proposed. To eliminate the shadow effect, we divide the CCAs into several subarrays to obtain the complete output vector. Considering the anisotropic radiation pattern of a CCA, which cannot be separated from the manifold matrix, an improved interpolation method is investigated to transform the directional subarray into omnidirectional virtual nested arrays without non-orthogonal perturbation on the noise vector. Then, the cross-correlation matrix(CCM) of the subarrays is used to generate the consecutive co-arrays without redundant elements and eliminate the noise vector. Finally, the full-rank equivalent covariance matrix is constructed using the output of co-arrays,and the unitary estimation of the signal parameters via rotational invariance techniques(ESPRIT) is performed on the equivalent covariance matrix to estimate the DOAs with low computational complexity. Numerical simulations verify the superior performance of the proposed algorithm, especially under a low signal-to-noise ratio(SNR) environment.展开更多
The maximum likelihood (ML) estimator demonstrates remarkable performance in direction of arrival (DOA) estimation for the multiple input multiple output (MIMO) sonar. However, this advantage comes with prohibit...The maximum likelihood (ML) estimator demonstrates remarkable performance in direction of arrival (DOA) estimation for the multiple input multiple output (MIMO) sonar. However, this advantage comes with prohibitive computational complexity. In order to solve this problem, an ant colony optimization (ACO) is incorporated into the MIMO ML DOA estimator. Based on the ACO, a novel MIMO ML DOA estimator named the MIMO ACO ML (ML DOA estimator based on ACO for MIMO sonar) with even lower computational complexity is proposed. By extending the pheromone remaining process to the pheromone Gaussian kernel probability distribution function in the continuous space, the pro- posed algorithm achieves the global optimum value of the MIMO ML DOA estimator. Simulations and experimental results show that the computational cost of MIMO ACO ML is only 1/6 of the MIMO ML algorithm, while maintaining similar performance with the MIMO ML method.展开更多
This paper presents a modified Root-MUSIC algorithm by which the signal DOA estimation performance can be improved when the snapshot number is limited. The operation principlesof this algorithm are described in detail...This paper presents a modified Root-MUSIC algorithm by which the signal DOA estimation performance can be improved when the snapshot number is limited. The operation principlesof this algorithm are described in detail. It is also pointed out theoretically that this is equivalentto have increased the snapshot number and can make the DOA estimation better. Finally, somesimulating results to verify the theoretical analyses are presented.展开更多
基金supported by the National Natural Science Foundation of China (62071144)
文摘Most of the existing direction of arrival(DOA)estimation algorithms are applied under the assumption that the array manifold is ideal.In practical engineering applications,the existence of non-ideal conditions such as mutual coupling between array elements,array amplitude and phase errors,and array element position errors leads to defects in the array manifold,which makes the performance of the algorithm decline rapidly or even fail.In order to solve the problem of DOA estimation in the presence of amplitude and phase errors and array element position errors,this paper introduces the first-order Taylor expansion equivalent model of the received signal under the uniform linear array from the Bayesian point of view.In the solution,the amplitude and phase error parameters and the array element position error parameters are regarded as random variables obeying the Gaussian distribution.At the same time,the expectation-maximization algorithm is used to update the probability distribution parameters,and then the two error parameters are solved alternately to obtain more accurate DOA estimation results.Finally,the effectiveness of the proposed algorithm is verified by simulation and experiment.
基金supported by the National Natural Science Foundation of China(62301598).
文摘To tackle the challenges of intractable parameter tun-ing,significant computational expenditure and imprecise model-driven sparse-based direction of arrival(DOA)estimation with array error(AE),this paper proposes a deep unfolded amplitude-phase error self-calibration network.Firstly,a sparse-based DOA model with an array convex error restriction is established,which gets resolved via an alternating iterative minimization(AIM)algo-rithm.The algorithm is then unrolled to a deep network known as AE-AIM Network(AE-AIM-Net),where all parameters are opti-mized through multi-task learning using the constructed com-plete dataset.The results of the simulation and theoretical analy-sis suggest that the proposed unfolded network achieves lower computational costs compared to typical sparse recovery meth-ods.Furthermore,it maintains excellent estimation performance even in the presence of array magnitude-phase errors.
文摘针对现有时间维度波达方向(direction of arrival,DOA)估计方案中,时间调控速率受限导致目标信号频谱混叠的问题,提出了一种基于异步调控的DOA估计方法,该方法能够有效提升调控速率,进而提升信号处理的信号带宽。在不改变时间调控超表面(time-varying metasurface,TVM)硬件约束的情况下,该方法利用单元状态会持续一段时间的性质,交错不同列单元的变化起始时间,在一个状态持续时间内获得了多个不同的响应。异步调控方法能够使TVM在受材料限制的情况下,等效增加虚拟多通道个数,提高DOA估计的精度。仿真结果验证了方法的有效性,相较于现有的同步调控方法,新方法在DOA估计性能上有了较大提升,能够逼近理论上的最优DOA估计结果。
文摘为了能够准确高效地对离格信号的波达方向(Direction of Arrival, DOA)进行估计,利用卷积神经网络来提取信号协方差矩阵中的深度特征信息,并采用改进型标签策略来确保网络的估计精度和效率。具体来说,通过带小数的标签来注释协方差矩阵构成的张量,并配合上改进后的二进制交叉熵损失函数来使得所提出的小数标签能够用于网络训练。针对DOA估计对应的多标签—多分类的问题,使用了包含6层结构的卷积神经网络的输出单元类别以及幅度来分别对离格信号的DOA整数部分与小数部分进行重构。通过与6种现有典型方法的均方根误差(Root Mean Square Error, RMSE)仿真对比,所提方法能够在信噪比为-10 dB的情况下保持着RMSE<0.5°的优秀表现。虽然无法在较少快拍下正常工作,但该方法在快拍数大于8的条件下仍然保持着RMSE<1°的表现性能。同时,在信号数量为5时,所提方法依然具有较高的估计稳定性,且计算速度能够达到毫秒级,用时明显低于其他方法。
基金supported by the National Natural Science Foundation of China (61971217, 61601167)Jiangsu Planned Project for Postdoctoral Research Funds (2020Z013)+2 种基金China Postdoctoral Science Foundation (2020M681585)the fund of State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System (CEMEE 2021Z0101B)the fund of State Key Laboratory of Marine Resource Utilization in South China Sea (Hainan University)(MRUKF2021033)。
文摘In this paper, a low complexity direction of arrival(DOA) estimation method for massive uniform circular array(UCA) with single snapshot is proposed.Firstly, the coarse DOAs are estimated by finding the peaks from the circular convolution between a fixed coefficient vector and the received data vector.Thereafter, in order to refine coarse DOA estimates, we reconstruct the direction matrix based on the coarse DOA estimations and take the first order Taylor expansion with DOA estimation offsets into account.Finally, the refined estimations are obtained by compensating the offsets, which are obtained via least squares(LS) without any complex searches.In addition, the refinement can be iteratively implemented to enhance the estimation results.Compared to the offset search method, the proposed method achieves a better estimation performance while requiring lower complexity.Numerical simulations are presented to demonstrate the effectiveness of the proposed method.
文摘A low-complexity method for direction of arrival(DOA) estimation based on estimation signal parameters via rotational invariance technique(ESPRIT) is proposed.Instead of using the cross-correlation vectors in multistage Wiener filter(MSWF),the orthogonal residual vectors obtained in conjugate gradient(CG) method span the signal subspace used by ESPRIT.The computational complexity of the proposed method is significantly reduced,since the signal subspace estimation mainly needs two matrixvector complex multiplications at the iteration of data level.Furthermore,the prior training data are not needed in the proposed method.To overcome performance degradation at low signal to noise ratio(SNR),the expanded signal subspace spanned by more basis vectors is used and simultaneously renders ESPRIT yield redundant DOAs,which can be excluded by performing ESPRIT once more using the unexpanded signal subspace.Compared with the traditional ESPRIT methods by MSWF and eigenvalue decomposition(EVD),numerical results demonstrate the satisfactory performance of the proposed method.
基金supported by the National Natural Science Foundation of China(61301211)and the Aviation Science Foundation(20131852028)
文摘A 2D-direction of arrival estimation (DOAE) for multi input and multi-output (MIMO) radar using improved multiple temporal-spatial subspaces in estimating signal parameters via rotational invariance techniques method (TS-ESPRIT) is introduced. In order to realize the improved TS-ESPRIT, the proposed algorithm divides the planar array into multiple uniform sub-planar arrays with common reference point to get a unified phase shifts measurement point for all sub-arrays. The TS-ESPRIT is applied to each sub-array separately, and in the same time with the others to realize the parallelly temporal and spatial processing, so that it reduces the non-linearity effect of model and decreases the computational time. Then, the time difference of arrival (TDOA) technique is applied to combine the multiple sub-arrays in order to form the improved TS-ESPRIT. It is found that the proposed method achieves high accuracy at a low signal to noise ratio (SNR) with low computational complexity, leading to enhancement of the estimators performance.
文摘A novel identification method for point source,coherently distributed(CD) source and incoherently distributed(ICD) source is proposed.The differences among the point source,CD source and ICD source are studied.According to the different characters of covariance matrix and general steering vector of the array received source,a second order blind identification method is used to separate the sources,the mixing matrix could be obtained.From the mixing matrix,the type of the source is identified by using an amplitude criterion.And the direction of arrival for the array received source is estimated by using the matching pursuit algorithm from the vectors of the mixing matrix.Computer simulations validate the efficiency of the method.
基金supported by the National Natural Science Foundation of China(61671352)the open foundation of Key Laboratory of Cognitive Radio and Information Processing,Ministry of Education(Guilin University of Electronic Technology)(CRKL160206)Xi’an University of Science and Technology Doctor(after)Start Gold Project(2017QDJ018)
文摘In order to solve the problem of coherent signal subspace method(CSSM) depending on the estimated accuracy of signal subspace, a new direction of arrival(DOA) estimation method of wideband source, which is based on iterative adaptive spectral reconstruction, is proposed. Firstly, the wideband signals are divided into several narrowband signals of different frequency bins by discrete Fourier transformation(DFT). Then, the signal matched power spectrum in referenced frequency bins is computed, which can form the initial covariance matrix. Finally, the linear restrained minimum variance spectral(Capon spectral) of signals in other frequency bins are reconstructed using sequential iterative means, so the DOA can be estimated by the locations of spectral peaks. Theoretical analysis and simulation results show the proposed method based on the iterative spectral reconstruction for the covariance matrices of all sub-bands can avoid the problem of determining the signal subspace accurately with the coherent signal subspace method under the conditions of small samples and low signal to noise ratio(SNR), and it can also realize full dimensional focusing of different sub-band data, which can be applied to coherent sources and can significantly improve the accuracy of DOA estimation.
文摘To estimate the direction-of-arrival (DOA) of wideband coherent signals, a new method by modifying the orthogonality of the projected suhspaces method is proposed. And it can deal with randomly position perturbed arrays by using the Toeplitz method. This method needn't the primary information of DOA for focusing matrix and the sector dividing of interpolated method, which improving the precision of estimation and reducing the computational complexity. Simulations illustrate the effectiveness of this method.
文摘This paper develops a deep estimator framework of deep convolution networks(DCNs)for super-resolution direction of arrival(DOA)estimation.In addition to the scenario of correlated signals,the quantization errors of the DCN are the major challenge.In our deep estimator framework,one DCN is used for spectrum estimation with quantization errors,and the remaining two DCNs are used to estimate quantization errors.We propose training our estimator using the spatial sampled covariance matrix directly as our deep estimator’s input without any feature extraction operation.Then,we reconstruct the original spatial spectrum from the spectrum estimate and quantization errors estimate.Also,the feasibility of the proposed deep estimator is analyzed in detail in this paper.Once the deep estimator is appropriately trained,it can recover the correlated signals’spatial spectrum fast and accurately.Simulation results show that our estimator performs well in both resolution and estimation error compared with the state-of-the-art algorithms.
基金supported by the National Natural Science Foundation of China(61571149)the Natural Science Foundation of Heilongjiang Province(LH2020F017)+1 种基金the Initiation Fund for Postdoctoral Research in Heilongjiang Province(LBH-Q19098)the Heilongjiang Province Key Laboratory of High Accuracy Satellite Navigation and Marine Application Laboratory(HKL-2020-Y01).
文摘In order to resolve direction finding problems in the impulse noise,a direction of arrival(DOA)estimation method is proposed.The proposed DOA estimation method can restrain the impulse noise by using infinite norm exponential kernel covariance matrix and obtain excellent performance via the maximumlikelihood(ML)algorithm.In order to obtain the global optimal solutions of this method,a quantum electromagnetic field optimization(QEFO)algorithm is designed.In view of the QEFO algorithm,the proposed method can resolve the difficulties of DOA estimation in the impulse noise.Comparing with some traditional DOA estimation methods,the proposed DOA estimation method shows high superiority and robustness for determining the DOA of independent and coherent sources,which has been verified via the Monte-Carlo experiments of different schemes,especially in the case of snapshot deficiency,low generalized signal to noise ratio(GSNR)and strong impulse noise.Beyond that,the Cramer-Rao bound(CRB)of angle estimation in the impulse noise and the proof of the convergence of the QEFO algorithm are provided in this paper.
基金supported by the National Natural Science Foundation of China (NSFC) [grant number. 61871414]。
文摘In this paper, a novel direction of arrival(DOA) estimation algorithm using directional antennas in cylindrical conformal arrays(CCAs) is proposed. To eliminate the shadow effect, we divide the CCAs into several subarrays to obtain the complete output vector. Considering the anisotropic radiation pattern of a CCA, which cannot be separated from the manifold matrix, an improved interpolation method is investigated to transform the directional subarray into omnidirectional virtual nested arrays without non-orthogonal perturbation on the noise vector. Then, the cross-correlation matrix(CCM) of the subarrays is used to generate the consecutive co-arrays without redundant elements and eliminate the noise vector. Finally, the full-rank equivalent covariance matrix is constructed using the output of co-arrays,and the unitary estimation of the signal parameters via rotational invariance techniques(ESPRIT) is performed on the equivalent covariance matrix to estimate the DOAs with low computational complexity. Numerical simulations verify the superior performance of the proposed algorithm, especially under a low signal-to-noise ratio(SNR) environment.
基金supported by the National Natural Science Foundation of China (60972152)the National Laboratory Foundation of China (9140C2304080607)+1 种基金the Aviation Science Fund (2009ZC53031)the Doctoral Foundation of Northwestern Polytechnical University (CX201002)
文摘The maximum likelihood (ML) estimator demonstrates remarkable performance in direction of arrival (DOA) estimation for the multiple input multiple output (MIMO) sonar. However, this advantage comes with prohibitive computational complexity. In order to solve this problem, an ant colony optimization (ACO) is incorporated into the MIMO ML DOA estimator. Based on the ACO, a novel MIMO ML DOA estimator named the MIMO ACO ML (ML DOA estimator based on ACO for MIMO sonar) with even lower computational complexity is proposed. By extending the pheromone remaining process to the pheromone Gaussian kernel probability distribution function in the continuous space, the pro- posed algorithm achieves the global optimum value of the MIMO ML DOA estimator. Simulations and experimental results show that the computational cost of MIMO ACO ML is only 1/6 of the MIMO ML algorithm, while maintaining similar performance with the MIMO ML method.
文摘This paper presents a modified Root-MUSIC algorithm by which the signal DOA estimation performance can be improved when the snapshot number is limited. The operation principlesof this algorithm are described in detail. It is also pointed out theoretically that this is equivalentto have increased the snapshot number and can make the DOA estimation better. Finally, somesimulating results to verify the theoretical analyses are presented.