To estimate the direction-of-arrival (DOA) of wideband coherent signals, a new method by modifying the orthogonality of the projected suhspaces method is proposed. And it can deal with randomly position perturbed ar...To estimate the direction-of-arrival (DOA) of wideband coherent signals, a new method by modifying the orthogonality of the projected suhspaces method is proposed. And it can deal with randomly position perturbed arrays by using the Toeplitz method. This method needn't the primary information of DOA for focusing matrix and the sector dividing of interpolated method, which improving the precision of estimation and reducing the computational complexity. Simulations illustrate the effectiveness of this method.展开更多
To estimate the angle of arrivals (AOA) of wideband chirp sources, a new timo-frequency algorithm is proposed. In this method, virtual sensors are constructed based on the fact that the steering vectors of wideband ...To estimate the angle of arrivals (AOA) of wideband chirp sources, a new timo-frequency algorithm is proposed. In this method, virtual sensors are constructed based on the fact that the steering vectors of wideband chirp signals are linear and vary with time. And the randon Wignersville distribution (RWVD) of real sensors and virtual sensors are calculated to yield the new time-invariable steering vectors, furthermore, the noise and cross terms are suppressed. In addition, the multiple chirp signals are selected by their time-frequency points. The cost of computation is lower than the common AOA estimation methods of wideband sources due to nonrequirement of frequency focusing, interpolating and matrix decomposition, including subspace decomposition. Under the lower signal noise ratio (SNR) condition, the proposed method exhibits better precision than the method of frequency focusing (FF). The proposed method can be further applied to nonuniform linear array (NLA) since it is not confined to the array geometry. Simulation results illustrate the efficacy of the proposed method.展开更多
This paper introduces an algorithm for beamforming systems by the aid of multidimensional harmonic retrieval(MHR).This algorithm resolves problems,removes limitations of sampling and provides a more robust beamformer....This paper introduces an algorithm for beamforming systems by the aid of multidimensional harmonic retrieval(MHR).This algorithm resolves problems,removes limitations of sampling and provides a more robust beamformer.A new sample space is created that can be used for estimating weights of a new beamforming called spatial-harmonics retrieval beamformer(SHRB).Simulation results show that SHRB has a better performance,accuracy,and applicability and more powerful eigenvalues than conventional beamformers.A simple mathematical proof is provided.By changing the number of harmonics,as a degree of freedom that is missing in conventional beamformers,SHRB can achieve more optimal outputs without increasing the number of spatial or temporal samples.We will demonstrate that SHRB offers an improvement of 4 dB in signal to noise ratio(SNR) in bit error rate(BER) of 10~(-4) over conventional beamformers.In the case of direction of arrival(DOA) estimation,SHRB can estimate the DOA of the desired signal with an SNR of-25 dB,when conventional methods cannot have acceptable response.展开更多
A new direction-of-arrival (DOA) estimation algorithm for wideband sources is introduced, The new method obtains the output of the virtual arrays in the signal bandwidth using cubic spline function interpolation tec...A new direction-of-arrival (DOA) estimation algorithm for wideband sources is introduced, The new method obtains the output of the virtual arrays in the signal bandwidth using cubic spline function interpolation techniques. The narrowband high- resolution algorithm is then used to get the DOA estimation. This technique does not require any preliminary knowledge of DOA angles. Simulation results demonstrate the effectiveness of the method.展开更多
文摘To estimate the direction-of-arrival (DOA) of wideband coherent signals, a new method by modifying the orthogonality of the projected suhspaces method is proposed. And it can deal with randomly position perturbed arrays by using the Toeplitz method. This method needn't the primary information of DOA for focusing matrix and the sector dividing of interpolated method, which improving the precision of estimation and reducing the computational complexity. Simulations illustrate the effectiveness of this method.
文摘To estimate the angle of arrivals (AOA) of wideband chirp sources, a new timo-frequency algorithm is proposed. In this method, virtual sensors are constructed based on the fact that the steering vectors of wideband chirp signals are linear and vary with time. And the randon Wignersville distribution (RWVD) of real sensors and virtual sensors are calculated to yield the new time-invariable steering vectors, furthermore, the noise and cross terms are suppressed. In addition, the multiple chirp signals are selected by their time-frequency points. The cost of computation is lower than the common AOA estimation methods of wideband sources due to nonrequirement of frequency focusing, interpolating and matrix decomposition, including subspace decomposition. Under the lower signal noise ratio (SNR) condition, the proposed method exhibits better precision than the method of frequency focusing (FF). The proposed method can be further applied to nonuniform linear array (NLA) since it is not confined to the array geometry. Simulation results illustrate the efficacy of the proposed method.
文摘This paper introduces an algorithm for beamforming systems by the aid of multidimensional harmonic retrieval(MHR).This algorithm resolves problems,removes limitations of sampling and provides a more robust beamformer.A new sample space is created that can be used for estimating weights of a new beamforming called spatial-harmonics retrieval beamformer(SHRB).Simulation results show that SHRB has a better performance,accuracy,and applicability and more powerful eigenvalues than conventional beamformers.A simple mathematical proof is provided.By changing the number of harmonics,as a degree of freedom that is missing in conventional beamformers,SHRB can achieve more optimal outputs without increasing the number of spatial or temporal samples.We will demonstrate that SHRB offers an improvement of 4 dB in signal to noise ratio(SNR) in bit error rate(BER) of 10~(-4) over conventional beamformers.In the case of direction of arrival(DOA) estimation,SHRB can estimate the DOA of the desired signal with an SNR of-25 dB,when conventional methods cannot have acceptable response.
文摘A new direction-of-arrival (DOA) estimation algorithm for wideband sources is introduced, The new method obtains the output of the virtual arrays in the signal bandwidth using cubic spline function interpolation techniques. The narrowband high- resolution algorithm is then used to get the DOA estimation. This technique does not require any preliminary knowledge of DOA angles. Simulation results demonstrate the effectiveness of the method.