Low-frequency signals have been proven valuable in the fields of target detection and geological exploration.Nevertheless,the practical implementation of these signals is hindered by large antenna diameters,limiting t...Low-frequency signals have been proven valuable in the fields of target detection and geological exploration.Nevertheless,the practical implementation of these signals is hindered by large antenna diameters,limiting their potential applications.Therefore,it is imperative to study the creation of lowfrequency signals using antennas with suitable dimensions.In contrast to conventional mechanical antenna techniques,our study generates low-frequency signals in the spatial domain utilizing the principle of the Doppler effect.We also defines the antenna array architecture,the timing sequency,and the radiating element signal waveform,and provides experimental prototypes including 8/64 antennas based on earlier research.In the conducted experiments,121 MHz,40 MHz,and 10 kHz composite signals are generated by 156 MHz radiating element signals.The composite signal spectrum matches the simulations,proving our low-frequency signal generating method works.This holds significant implications for research on generating low-frequency signals with small-sized antennas.展开更多
A polynomial-rooting based fourth-order cumulant algorithm is presented for direction-of-arrival(DOA) estimation of second-order fully noncircular source signals, using a uniform linear array(ULA). This algorithm ...A polynomial-rooting based fourth-order cumulant algorithm is presented for direction-of-arrival(DOA) estimation of second-order fully noncircular source signals, using a uniform linear array(ULA). This algorithm inherits all merits of its spectralsearching counterpart except for the applicability to arbitrary array geometry, while reducing considerably the computation cost.Simulation results show that the proposed algorithm outperforms the previously developed closed-form second-order noncircular ESPRIT method, in terms of processing capacity and DOA estimation accuracy, especially in the presence of spatially colored noise.展开更多
The nonuniform L-shaped spatially spread loop and dipole(SSLD) array whose inter-element spacing is greater than half a wavelength is studied. A joint parameter estimation algorithm of direction of arrival(DOA), f...The nonuniform L-shaped spatially spread loop and dipole(SSLD) array whose inter-element spacing is greater than half a wavelength is studied. A joint parameter estimation algorithm of direction of arrival(DOA), frequency and polarization is presented for plane-wave signals. The direct sampling and the corresponding delayed sampling data are used to construct the data correlation matrix. On the basis of the subspace theory and the least square method, the frequency and the steering vector of the whole array are obtained. According to the relationship of the array manifold vector between electric dipoles and magnetic loops,the polarization parameters are given. The unambiguous phase estimates are acquired by applying virtual baseline array transformation to the spatial steering vectors, and they are used as coarse references to disambiguate the cyclic phase ambiguities in phase differences between two adjacent array elements on the array,then the high accuracy DOA estimates are obtained. Closed-form solutions for each parameter are obtained. This method has advantages of lower calculation complexity and no parameter matching. The experiment results verify the effectiveness and feasibility of the presented algorithm.展开更多
To estimate the direction-of-arrival (DOA) of wideband coherent signals, a new method by modifying the orthogonality of the projected suhspaces method is proposed. And it can deal with randomly position perturbed ar...To estimate the direction-of-arrival (DOA) of wideband coherent signals, a new method by modifying the orthogonality of the projected suhspaces method is proposed. And it can deal with randomly position perturbed arrays by using the Toeplitz method. This method needn't the primary information of DOA for focusing matrix and the sector dividing of interpolated method, which improving the precision of estimation and reducing the computational complexity. Simulations illustrate the effectiveness of this method.展开更多
To estimate the angle of arrivals (AOA) of wideband chirp sources, a new timo-frequency algorithm is proposed. In this method, virtual sensors are constructed based on the fact that the steering vectors of wideband ...To estimate the angle of arrivals (AOA) of wideband chirp sources, a new timo-frequency algorithm is proposed. In this method, virtual sensors are constructed based on the fact that the steering vectors of wideband chirp signals are linear and vary with time. And the randon Wignersville distribution (RWVD) of real sensors and virtual sensors are calculated to yield the new time-invariable steering vectors, furthermore, the noise and cross terms are suppressed. In addition, the multiple chirp signals are selected by their time-frequency points. The cost of computation is lower than the common AOA estimation methods of wideband sources due to nonrequirement of frequency focusing, interpolating and matrix decomposition, including subspace decomposition. Under the lower signal noise ratio (SNR) condition, the proposed method exhibits better precision than the method of frequency focusing (FF). The proposed method can be further applied to nonuniform linear array (NLA) since it is not confined to the array geometry. Simulation results illustrate the efficacy of the proposed method.展开更多
This paper presents a modified Root-MUSIC algorithm by which the signal DOA estimation performance can be improved when the snapshot number is limited. The operation principlesof this algorithm are described in detail...This paper presents a modified Root-MUSIC algorithm by which the signal DOA estimation performance can be improved when the snapshot number is limited. The operation principlesof this algorithm are described in detail. It is also pointed out theoretically that this is equivalentto have increased the snapshot number and can make the DOA estimation better. Finally, somesimulating results to verify the theoretical analyses are presented.展开更多
For multi-channel synthetic aperture radar(SAR) systems, since the minimum antenna area constraint is eliminated,wide swath and high resolution SAR image can be achieved.However, the unavoidable array errors, consis...For multi-channel synthetic aperture radar(SAR) systems, since the minimum antenna area constraint is eliminated,wide swath and high resolution SAR image can be achieved.However, the unavoidable array errors, consisting of channel gainphase mismatch and position uncertainty, significantly degrade the performance of such systems. An iteration-free method is proposed to simultaneously estimate position and gain-phase errors.In our research, the steering vectors corresponding to a pair of Doppler bins within the same range bin are studied in terms of their rotational relationships. The method is based on the fact that the rotational matrix only depends on the position errors and the frequency spacing between the paired Doppler bins but is independent of gain-phase error. Upon combining the projection matrices corresponding to the paired Doppler bins, the position errors are directly obtained in terms of extracting the rotational matrix in a least squares framework. The proposed method, when used in conjunction with the self-calibration algorithm, performs stably as well as has less computational load, compared with the conventional methods. Simulations reveal that the proposed method behaves better than the conventional methods even when the signal-to-noise ratio(SNR) is low.展开更多
A minimum geometric power distortionless response beamforming approach against impulsive noise (including all α- stable noise) of unknown statistics is proposed. Due to that definite logarithmic moments require no ...A minimum geometric power distortionless response beamforming approach against impulsive noise (including all α- stable noise) of unknown statistics is proposed. Due to that definite logarithmic moments require no priori knowledge of impulsive noise, this new beamformer substitutes the logarithmic moments for the second-order moments and iteratively minimizes the "ge- ometric power" of the beamformer.s output snapshots, subjected to a linear constraint. Therefore, the proposed beamformer can provide significantly higher output geometric signal-to-noise-andinterference ratio. Moreover, the optimum weight vector is obtained by using a new iteration process. The simulation results prove that the new method is effective.展开更多
This paper introduces an algorithm for beamforming systems by the aid of multidimensional harmonic retrieval(MHR).This algorithm resolves problems,removes limitations of sampling and provides a more robust beamformer....This paper introduces an algorithm for beamforming systems by the aid of multidimensional harmonic retrieval(MHR).This algorithm resolves problems,removes limitations of sampling and provides a more robust beamformer.A new sample space is created that can be used for estimating weights of a new beamforming called spatial-harmonics retrieval beamformer(SHRB).Simulation results show that SHRB has a better performance,accuracy,and applicability and more powerful eigenvalues than conventional beamformers.A simple mathematical proof is provided.By changing the number of harmonics,as a degree of freedom that is missing in conventional beamformers,SHRB can achieve more optimal outputs without increasing the number of spatial or temporal samples.We will demonstrate that SHRB offers an improvement of 4 dB in signal to noise ratio(SNR) in bit error rate(BER) of 10~(-4) over conventional beamformers.In the case of direction of arrival(DOA) estimation,SHRB can estimate the DOA of the desired signal with an SNR of-25 dB,when conventional methods cannot have acceptable response.展开更多
Although a various of existing techniques are able to improve the performance of detection of the weak interesting sig- nal, how to adaptively and efficiently attenuate the intricate noises especially in the case of n...Although a various of existing techniques are able to improve the performance of detection of the weak interesting sig- nal, how to adaptively and efficiently attenuate the intricate noises especially in the case of no available reference noise signal is still the bottleneck to be overcome. According to the characteristics of sonar arrays, a multi-channel differencing method is presented to provide the prerequisite reference noise. However, the ingre- dient of obtained reference noise is too complicated to be used to effectively reduce the interference noise only using the clas- sical linear cancellation methods. Hence, a novel adaptive noise cancellation method based on the multi-kernel normalized least- mean-square algorithm consisting of weighted linear and Gaussian kernel functions is proposed, which allows to simultaneously con- sider the cancellation of linear and nonlinear components in the reference noise. The simulation results demonstrate that the out- put signal-to-noise ratio (SNR) of the novel multi-kernel adaptive filtering method outperforms the conventional linear normalized least-mean-square method and the mono-kernel normalized least- mean-square method using the realistic noise data measured in the lake experiment.展开更多
A direction of arrival(DOA) estimation algorithm is proposed using the concept of sparse representation. In particular, a new sparse signal representation model called the smoothed covariance vector(SCV) is establ...A direction of arrival(DOA) estimation algorithm is proposed using the concept of sparse representation. In particular, a new sparse signal representation model called the smoothed covariance vector(SCV) is established, which is constructed using the lower left diagonals of the covariance matrix. DOA estimation is then achieved from the SCV by sparse recovering, where two distinguished error limit estimation methods of the constrained optimization are proposed to make the algorithms more robust. The algorithm shows robust performance on DOA estimation in a uniform array, especially for coherent signals. Furthermore, it significantly reduces the computational load compared with those algorithms based on multiple measurement vectors(MMVs). Simulation results validate the effectiveness and efficiency of the proposed algorithm.展开更多
A new direction-of-arrival (DOA) estimation algorithm for wideband sources is introduced, The new method obtains the output of the virtual arrays in the signal bandwidth using cubic spline function interpolation tec...A new direction-of-arrival (DOA) estimation algorithm for wideband sources is introduced, The new method obtains the output of the virtual arrays in the signal bandwidth using cubic spline function interpolation techniques. The narrowband high- resolution algorithm is then used to get the DOA estimation. This technique does not require any preliminary knowledge of DOA angles. Simulation results demonstrate the effectiveness of the method.展开更多
The signal direction of arrival (DOA) estimate algorithm based on the eigendecomposition of the modified covariance matrix is introduced in this paper. A field test system consisting of a 4-element linear array and a ...The signal direction of arrival (DOA) estimate algorithm based on the eigendecomposition of the modified covariance matrix is introduced in this paper. A field test system consisting of a 4-element linear array and a meter band radar is also presented, which is applied to the experimental studies of the algorithms in the practical performances. The results of the test indicate that when SNR is only 5.85 dB, two airplanes being 0.25 beam width apart in azimuth can be resolved clearly.展开更多
基金Science and Technology Project of Aerospace Information Research Institute,Chinese Academy of Sciences(Y910340Z2F)Science and Technology Project of BBEF(E3E2010201)。
文摘Low-frequency signals have been proven valuable in the fields of target detection and geological exploration.Nevertheless,the practical implementation of these signals is hindered by large antenna diameters,limiting their potential applications.Therefore,it is imperative to study the creation of lowfrequency signals using antennas with suitable dimensions.In contrast to conventional mechanical antenna techniques,our study generates low-frequency signals in the spatial domain utilizing the principle of the Doppler effect.We also defines the antenna array architecture,the timing sequency,and the radiating element signal waveform,and provides experimental prototypes including 8/64 antennas based on earlier research.In the conducted experiments,121 MHz,40 MHz,and 10 kHz composite signals are generated by 156 MHz radiating element signals.The composite signal spectrum matches the simulations,proving our low-frequency signal generating method works.This holds significant implications for research on generating low-frequency signals with small-sized antennas.
基金supported by the National Natural Science Foundation of China(617020986170209961331019)
文摘A polynomial-rooting based fourth-order cumulant algorithm is presented for direction-of-arrival(DOA) estimation of second-order fully noncircular source signals, using a uniform linear array(ULA). This algorithm inherits all merits of its spectralsearching counterpart except for the applicability to arbitrary array geometry, while reducing considerably the computation cost.Simulation results show that the proposed algorithm outperforms the previously developed closed-form second-order noncircular ESPRIT method, in terms of processing capacity and DOA estimation accuracy, especially in the presence of spatially colored noise.
基金supported by the National Natural Science Foundation of China(6120129561231017)the Fundamental Research Funds for the Central Universities(K5051307017)
文摘The nonuniform L-shaped spatially spread loop and dipole(SSLD) array whose inter-element spacing is greater than half a wavelength is studied. A joint parameter estimation algorithm of direction of arrival(DOA), frequency and polarization is presented for plane-wave signals. The direct sampling and the corresponding delayed sampling data are used to construct the data correlation matrix. On the basis of the subspace theory and the least square method, the frequency and the steering vector of the whole array are obtained. According to the relationship of the array manifold vector between electric dipoles and magnetic loops,the polarization parameters are given. The unambiguous phase estimates are acquired by applying virtual baseline array transformation to the spatial steering vectors, and they are used as coarse references to disambiguate the cyclic phase ambiguities in phase differences between two adjacent array elements on the array,then the high accuracy DOA estimates are obtained. Closed-form solutions for each parameter are obtained. This method has advantages of lower calculation complexity and no parameter matching. The experiment results verify the effectiveness and feasibility of the presented algorithm.
文摘To estimate the direction-of-arrival (DOA) of wideband coherent signals, a new method by modifying the orthogonality of the projected suhspaces method is proposed. And it can deal with randomly position perturbed arrays by using the Toeplitz method. This method needn't the primary information of DOA for focusing matrix and the sector dividing of interpolated method, which improving the precision of estimation and reducing the computational complexity. Simulations illustrate the effectiveness of this method.
文摘To estimate the angle of arrivals (AOA) of wideband chirp sources, a new timo-frequency algorithm is proposed. In this method, virtual sensors are constructed based on the fact that the steering vectors of wideband chirp signals are linear and vary with time. And the randon Wignersville distribution (RWVD) of real sensors and virtual sensors are calculated to yield the new time-invariable steering vectors, furthermore, the noise and cross terms are suppressed. In addition, the multiple chirp signals are selected by their time-frequency points. The cost of computation is lower than the common AOA estimation methods of wideband sources due to nonrequirement of frequency focusing, interpolating and matrix decomposition, including subspace decomposition. Under the lower signal noise ratio (SNR) condition, the proposed method exhibits better precision than the method of frequency focusing (FF). The proposed method can be further applied to nonuniform linear array (NLA) since it is not confined to the array geometry. Simulation results illustrate the efficacy of the proposed method.
文摘This paper presents a modified Root-MUSIC algorithm by which the signal DOA estimation performance can be improved when the snapshot number is limited. The operation principlesof this algorithm are described in detail. It is also pointed out theoretically that this is equivalentto have increased the snapshot number and can make the DOA estimation better. Finally, somesimulating results to verify the theoretical analyses are presented.
基金supported by the Natural Science Basic Research Plan in Shaanxi Province of China(2015JM6278)the China Postdoctoral Science Foundation(2015M582586)the China Academy of Space Technology Innovation Fund
文摘For multi-channel synthetic aperture radar(SAR) systems, since the minimum antenna area constraint is eliminated,wide swath and high resolution SAR image can be achieved.However, the unavoidable array errors, consisting of channel gainphase mismatch and position uncertainty, significantly degrade the performance of such systems. An iteration-free method is proposed to simultaneously estimate position and gain-phase errors.In our research, the steering vectors corresponding to a pair of Doppler bins within the same range bin are studied in terms of their rotational relationships. The method is based on the fact that the rotational matrix only depends on the position errors and the frequency spacing between the paired Doppler bins but is independent of gain-phase error. Upon combining the projection matrices corresponding to the paired Doppler bins, the position errors are directly obtained in terms of extracting the rotational matrix in a least squares framework. The proposed method, when used in conjunction with the self-calibration algorithm, performs stably as well as has less computational load, compared with the conventional methods. Simulations reveal that the proposed method behaves better than the conventional methods even when the signal-to-noise ratio(SNR) is low.
基金supported by the National High Technology Research and Development Program of China (863 Program) (2007AA701403)
文摘A minimum geometric power distortionless response beamforming approach against impulsive noise (including all α- stable noise) of unknown statistics is proposed. Due to that definite logarithmic moments require no priori knowledge of impulsive noise, this new beamformer substitutes the logarithmic moments for the second-order moments and iteratively minimizes the "ge- ometric power" of the beamformer.s output snapshots, subjected to a linear constraint. Therefore, the proposed beamformer can provide significantly higher output geometric signal-to-noise-andinterference ratio. Moreover, the optimum weight vector is obtained by using a new iteration process. The simulation results prove that the new method is effective.
文摘This paper introduces an algorithm for beamforming systems by the aid of multidimensional harmonic retrieval(MHR).This algorithm resolves problems,removes limitations of sampling and provides a more robust beamformer.A new sample space is created that can be used for estimating weights of a new beamforming called spatial-harmonics retrieval beamformer(SHRB).Simulation results show that SHRB has a better performance,accuracy,and applicability and more powerful eigenvalues than conventional beamformers.A simple mathematical proof is provided.By changing the number of harmonics,as a degree of freedom that is missing in conventional beamformers,SHRB can achieve more optimal outputs without increasing the number of spatial or temporal samples.We will demonstrate that SHRB offers an improvement of 4 dB in signal to noise ratio(SNR) in bit error rate(BER) of 10~(-4) over conventional beamformers.In the case of direction of arrival(DOA) estimation,SHRB can estimate the DOA of the desired signal with an SNR of-25 dB,when conventional methods cannot have acceptable response.
基金supported by the National Natural Science Foundation of China(6100115361271415)+2 种基金the Opening Research Foundation of State Key Laboratory of Underwater Information Processing and Control(9140C231002130C23085)the Fundamental Research Funds for the Central Universities(3102014JCQ010103102014ZD0041)
文摘Although a various of existing techniques are able to improve the performance of detection of the weak interesting sig- nal, how to adaptively and efficiently attenuate the intricate noises especially in the case of no available reference noise signal is still the bottleneck to be overcome. According to the characteristics of sonar arrays, a multi-channel differencing method is presented to provide the prerequisite reference noise. However, the ingre- dient of obtained reference noise is too complicated to be used to effectively reduce the interference noise only using the clas- sical linear cancellation methods. Hence, a novel adaptive noise cancellation method based on the multi-kernel normalized least- mean-square algorithm consisting of weighted linear and Gaussian kernel functions is proposed, which allows to simultaneously con- sider the cancellation of linear and nonlinear components in the reference noise. The simulation results demonstrate that the out- put signal-to-noise ratio (SNR) of the novel multi-kernel adaptive filtering method outperforms the conventional linear normalized least-mean-square method and the mono-kernel normalized least- mean-square method using the realistic noise data measured in the lake experiment.
基金supported by the National Natural Science Foundation of China(6127130061405150)
文摘A direction of arrival(DOA) estimation algorithm is proposed using the concept of sparse representation. In particular, a new sparse signal representation model called the smoothed covariance vector(SCV) is established, which is constructed using the lower left diagonals of the covariance matrix. DOA estimation is then achieved from the SCV by sparse recovering, where two distinguished error limit estimation methods of the constrained optimization are proposed to make the algorithms more robust. The algorithm shows robust performance on DOA estimation in a uniform array, especially for coherent signals. Furthermore, it significantly reduces the computational load compared with those algorithms based on multiple measurement vectors(MMVs). Simulation results validate the effectiveness and efficiency of the proposed algorithm.
文摘A new direction-of-arrival (DOA) estimation algorithm for wideband sources is introduced, The new method obtains the output of the virtual arrays in the signal bandwidth using cubic spline function interpolation techniques. The narrowband high- resolution algorithm is then used to get the DOA estimation. This technique does not require any preliminary knowledge of DOA angles. Simulation results demonstrate the effectiveness of the method.
文摘The signal direction of arrival (DOA) estimate algorithm based on the eigendecomposition of the modified covariance matrix is introduced in this paper. A field test system consisting of a 4-element linear array and a meter band radar is also presented, which is applied to the experimental studies of the algorithms in the practical performances. The results of the test indicate that when SNR is only 5.85 dB, two airplanes being 0.25 beam width apart in azimuth can be resolved clearly.