A new direction finding method is presented to deal with coexisted noncoherent and co- herent signals without smoothing operation. First the direction-of-arrival (DOA) estimation task is herein reformulated as a spa...A new direction finding method is presented to deal with coexisted noncoherent and co- herent signals without smoothing operation. First the direction-of-arrival (DOA) estimation task is herein reformulated as a sparse reconstruction problem of the cleaned array covariance matrix, which is processed to eliminate the affection of the noise. Then by using the block of matrices, the information of DOAs which we pursuit are implied in the sparse coefficient matrix. Finally, the sparse reconstruction problem is solved by the improved M-FOCUSS method, which is applied to the situation of block of matrices. This method outperforms its data domain counterpart in terms of noise suppression, and has a better performance in DOA estimation than the customary spatial smoothing technique. Simulation results verify the efficacy of the proposed method.展开更多
An array extension method in a noisy environment was proposed to improve angular resolution and array gain. The proposed method combines the FOC (fourth-order cumulants) technique with the ETAM (extended towed arra...An array extension method in a noisy environment was proposed to improve angular resolution and array gain. The proposed method combines the FOC (fourth-order cumulants) technique with the ETAM (extended towed array measurements) method to extend array aperture and suppress Gaussian noise, First, successive measurements of a virtual uniform linear array were constructed by applying lburth-order cumulants to measurements of uniform linear array; Gaussian noise in these measurements was also eliminated. Then, the array was extended by compensating phase differences using the ETAM method, Finally, the synthetic aperture was extended further by the fourth-order cumulants technique. The proposed FOC-ETAM-FOC method not only improves angular resolution and array gain, but also effectively suppresses Gaussian noise. Furthermore, it inherits the advantages of the ETAM method. Simulation results showed that the FOC-ETAM-FOC method achieved better angular resolution and array gain than the ETAM method. Furthermore this method outperforms the ETAM method in Gaussian noise environment.展开更多
The problem of two-dimensional(2 D)direction of arrival(DOA)estimation for double parallel uniform linear arrays is investigated in this paper.A real-valued DOA estimation algorithm of noncircular(NC)signal is propose...The problem of two-dimensional(2 D)direction of arrival(DOA)estimation for double parallel uniform linear arrays is investigated in this paper.A real-valued DOA estimation algorithm of noncircular(NC)signal is proposed,which combines the Euler transformation and rotational invariance(RI)property between subarrays.In this work,the effective array aperture is doubled by exploiting the noncircularity of signals.The complex arithmetic is converted to real arithmetic via Euler transformation.The main contribution of this work is not only extending the NC-Euler-ESPRIT algorithm from uniform linear array to double parallel uniform linear arrays,but also constructing a new 2 Drotational invariance property between subarrays,which is more complex than that in NCEuler-ESPRIT algorithm.The proposed 2 DNC-Euler-RI algorithm has much lower computational complexity than2 DNC-ESPRIT algorithm.The proposed algorithm has better angle estimation performance than 2 DESPRIT algorithm and 2 D NC-PM algorithm for double parallel uniform linear arrays,and is very close to that of 2 D NC-ESPRIT algorithm.The elevation angles and azimuth angles can be obtained with automatically pairing.The proposed algorithm can estimate up to 2(M-1)sources,which is two times that of 2 D ESPRIT algorithm.Cramer-Rao bound(CRB)of noncircular signal is derived for the proposed algorithm.Computational complexity comparison is also analyzed.Finally,simulation results are presented to illustrate the effectiveness and usefulness of the proposed algorithm.展开更多
Array pattern synthesis is an important research direction in array processing.It is a signal processing technology that uses sensor arrays to send and receive signals directionally.Pattern design and synthesis play a...Array pattern synthesis is an important research direction in array processing.It is a signal processing technology that uses sensor arrays to send and receive signals directionally.Pattern design and synthesis play an important role in the high performance of the array system.In this paper,we give an overview about the recently developed pattern synthesis algorithms with the concept of accurate array response control theory.展开更多
In this paper, a novel DOA estimation methodology based upon the technology of adaptive nulling antenna is proposed. Initially, the nulling antenna obtains the weight vector by LMS algorithm and power inversion criter...In this paper, a novel DOA estimation methodology based upon the technology of adaptive nulling antenna is proposed. Initially, the nulling antenna obtains the weight vector by LMS algorithm and power inversion criterion.Afterwards, reciprocal of the antenna pattern is defined as the spatial spectrum and the extracted peak values are corresponded to the estimated DOA. Through observation of the spectrum and data analysis of variable steps and SNRs, the simulation results demonstrate that the proposed method can estimate DOA above board. Furthermore, the estimation error of the proposed technique is directly proportional to step size and is inversely proportional to SNR. Unlike the existing MUSIC algorithm, the proposed algorithm has less computational complexity as it eliminates the need of estimating the number of signals and the eigenvalue decomposition of covariance matrix. Also it outperforms MUSIC algorithm, the recently proposed MUSIC-Like algorithm and classical methods by achieving better resolution with narrow width of peaks.展开更多
The problem addressed in this paper concerns the extension of widely linear beamforming to the wideband case,developing a wide-focused linear beamformer for the extraction of a wideband second-order(SO)noncircular sig...The problem addressed in this paper concerns the extension of widely linear beamforming to the wideband case,developing a wide-focused linear beamformer for the extraction of a wideband second-order(SO)noncircular signal-of-interest(SOI)contaminated by uncorrelated interferences and noise.In the proposed beamformer,the beamforming array observation is first focused to adopt a standard linear minimum variance distortionless response(MVDR)framework.The augmented SOI steering vector then is obtained by estimating the SOI noncircularity parameter with the newly proposed oblique projection with an augmented sparse representation scheme.The covariance matrix of the virtual interference,true interference and noise is further reconstructed using the newly presented complementary spatial spectrum technique.The wideband widely linear spatial filtering is finally realized via MVDR like beamforming.The performance of the proposed beamformer is verified by simulation.展开更多
An analysis of the received signal of array antennas shows that the received signal has multi-resolution characteristics, and hence the wavelet packet theory can be used to detect the signal. By emplying wavelet packe...An analysis of the received signal of array antennas shows that the received signal has multi-resolution characteristics, and hence the wavelet packet theory can be used to detect the signal. By emplying wavelet packet theory to adaptive beamforming, a wavelet packet transform-based adaptive beamforming algorithm (WP-ABF) is proposed . This WP-ABF algorithm uses wavelet packet transform as the preprocessing, and the wavelet packet transformed signal uses least mean square algorithm to implement the ~adaptive beamforming. White noise can be wiped off under wavelet packet transform according to the different characteristics of signal and white under the wavelet packet transform. Theoretical analysis and simulations demonstrate that the proposed WP-ABF algorithm converges faster than the conventional adaptive beamforming algorithm and the wavelet transform-based beamforming algorithm. Simulation results also reveal that the convergence of the algorithm relates closely to the wavelet base and series; that is, the algorithm convergence gets better with the increasing of series, and for the same series of wavelet base the convergence gets better with the increasing of regularity.展开更多
The problem of two-dimensional direction finding is approached by using a multi-layer Lshaped array. The proposed method is based on two sequential sparse representations,fulfilling respectively the estimation of elev...The problem of two-dimensional direction finding is approached by using a multi-layer Lshaped array. The proposed method is based on two sequential sparse representations,fulfilling respectively the estimation of elevation angles,and azimuth angles. For the estimation of elevation angles,the weighted sub-array smoothing technique for perfect data decorrelation is used to produce a covariance vector suitable for exact sparse representation,related only to the elevation angles. The estimates of elevation angles are then obtained by sparse restoration associated with this elevation angle dependent covariance vector. The estimates of elevation angles are further incorporated with weighted sub-array smoothing to yield a second covariance vector for precise sparse representation related to both elevation angles,and azimuth angles. The estimates of azimuth angles,automatically paired with the estimates of elevation angles,are finally obtained by sparse restoration associated with this latter elevation-azimuth angle related covariance vector. Simulation results are included to illustrate the performance of the proposed method.展开更多
基金Supported by the National Natural Science Foundation of China (61072098 61072099+1 种基金 60736006)PCSIRT-IRT1005
文摘A new direction finding method is presented to deal with coexisted noncoherent and co- herent signals without smoothing operation. First the direction-of-arrival (DOA) estimation task is herein reformulated as a sparse reconstruction problem of the cleaned array covariance matrix, which is processed to eliminate the affection of the noise. Then by using the block of matrices, the information of DOAs which we pursuit are implied in the sparse coefficient matrix. Finally, the sparse reconstruction problem is solved by the improved M-FOCUSS method, which is applied to the situation of block of matrices. This method outperforms its data domain counterpart in terms of noise suppression, and has a better performance in DOA estimation than the customary spatial smoothing technique. Simulation results verify the efficacy of the proposed method.
基金Supported by the National Science Foundation of China (No.60872146)
文摘An array extension method in a noisy environment was proposed to improve angular resolution and array gain. The proposed method combines the FOC (fourth-order cumulants) technique with the ETAM (extended towed array measurements) method to extend array aperture and suppress Gaussian noise, First, successive measurements of a virtual uniform linear array were constructed by applying lburth-order cumulants to measurements of uniform linear array; Gaussian noise in these measurements was also eliminated. Then, the array was extended by compensating phase differences using the ETAM method, Finally, the synthetic aperture was extended further by the fourth-order cumulants technique. The proposed FOC-ETAM-FOC method not only improves angular resolution and array gain, but also effectively suppresses Gaussian noise. Furthermore, it inherits the advantages of the ETAM method. Simulation results showed that the FOC-ETAM-FOC method achieved better angular resolution and array gain than the ETAM method. Furthermore this method outperforms the ETAM method in Gaussian noise environment.
基金supported by the National Science Foundation of China (No.61371169)the Aeronautical Science Foundation of China(No.20120152001)
文摘The problem of two-dimensional(2 D)direction of arrival(DOA)estimation for double parallel uniform linear arrays is investigated in this paper.A real-valued DOA estimation algorithm of noncircular(NC)signal is proposed,which combines the Euler transformation and rotational invariance(RI)property between subarrays.In this work,the effective array aperture is doubled by exploiting the noncircularity of signals.The complex arithmetic is converted to real arithmetic via Euler transformation.The main contribution of this work is not only extending the NC-Euler-ESPRIT algorithm from uniform linear array to double parallel uniform linear arrays,but also constructing a new 2 Drotational invariance property between subarrays,which is more complex than that in NCEuler-ESPRIT algorithm.The proposed 2 DNC-Euler-RI algorithm has much lower computational complexity than2 DNC-ESPRIT algorithm.The proposed algorithm has better angle estimation performance than 2 DESPRIT algorithm and 2 D NC-PM algorithm for double parallel uniform linear arrays,and is very close to that of 2 D NC-ESPRIT algorithm.The elevation angles and azimuth angles can be obtained with automatically pairing.The proposed algorithm can estimate up to 2(M-1)sources,which is two times that of 2 D ESPRIT algorithm.Cramer-Rao bound(CRB)of noncircular signal is derived for the proposed algorithm.Computational complexity comparison is also analyzed.Finally,simulation results are presented to illustrate the effectiveness and usefulness of the proposed algorithm.
文摘Array pattern synthesis is an important research direction in array processing.It is a signal processing technology that uses sensor arrays to send and receive signals directionally.Pattern design and synthesis play an important role in the high performance of the array system.In this paper,we give an overview about the recently developed pattern synthesis algorithms with the concept of accurate array response control theory.
基金support of the Science and Technology Commission of Chongqing through the Nature Science Fund (2013jj B40005)supported by the Fundamental Research Funds for the Central University (106112016CDJZR165508) of China
文摘In this paper, a novel DOA estimation methodology based upon the technology of adaptive nulling antenna is proposed. Initially, the nulling antenna obtains the weight vector by LMS algorithm and power inversion criterion.Afterwards, reciprocal of the antenna pattern is defined as the spatial spectrum and the extracted peak values are corresponded to the estimated DOA. Through observation of the spectrum and data analysis of variable steps and SNRs, the simulation results demonstrate that the proposed method can estimate DOA above board. Furthermore, the estimation error of the proposed technique is directly proportional to step size and is inversely proportional to SNR. Unlike the existing MUSIC algorithm, the proposed algorithm has less computational complexity as it eliminates the need of estimating the number of signals and the eigenvalue decomposition of covariance matrix. Also it outperforms MUSIC algorithm, the recently proposed MUSIC-Like algorithm and classical methods by achieving better resolution with narrow width of peaks.
基金National Natural Science Foundation of China(61331019,61490691)。
文摘The problem addressed in this paper concerns the extension of widely linear beamforming to the wideband case,developing a wide-focused linear beamformer for the extraction of a wideband second-order(SO)noncircular signal-of-interest(SOI)contaminated by uncorrelated interferences and noise.In the proposed beamformer,the beamforming array observation is first focused to adopt a standard linear minimum variance distortionless response(MVDR)framework.The augmented SOI steering vector then is obtained by estimating the SOI noncircularity parameter with the newly proposed oblique projection with an augmented sparse representation scheme.The covariance matrix of the virtual interference,true interference and noise is further reconstructed using the newly presented complementary spatial spectrum technique.The wideband widely linear spatial filtering is finally realized via MVDR like beamforming.The performance of the proposed beamformer is verified by simulation.
文摘An analysis of the received signal of array antennas shows that the received signal has multi-resolution characteristics, and hence the wavelet packet theory can be used to detect the signal. By emplying wavelet packet theory to adaptive beamforming, a wavelet packet transform-based adaptive beamforming algorithm (WP-ABF) is proposed . This WP-ABF algorithm uses wavelet packet transform as the preprocessing, and the wavelet packet transformed signal uses least mean square algorithm to implement the ~adaptive beamforming. White noise can be wiped off under wavelet packet transform according to the different characteristics of signal and white under the wavelet packet transform. Theoretical analysis and simulations demonstrate that the proposed WP-ABF algorithm converges faster than the conventional adaptive beamforming algorithm and the wavelet transform-based beamforming algorithm. Simulation results also reveal that the convergence of the algorithm relates closely to the wavelet base and series; that is, the algorithm convergence gets better with the increasing of series, and for the same series of wavelet base the convergence gets better with the increasing of regularity.
基金Supported by the National Natural Science Foundation of China(61331019,61490691)
文摘The problem of two-dimensional direction finding is approached by using a multi-layer Lshaped array. The proposed method is based on two sequential sparse representations,fulfilling respectively the estimation of elevation angles,and azimuth angles. For the estimation of elevation angles,the weighted sub-array smoothing technique for perfect data decorrelation is used to produce a covariance vector suitable for exact sparse representation,related only to the elevation angles. The estimates of elevation angles are then obtained by sparse restoration associated with this elevation angle dependent covariance vector. The estimates of elevation angles are further incorporated with weighted sub-array smoothing to yield a second covariance vector for precise sparse representation related to both elevation angles,and azimuth angles. The estimates of azimuth angles,automatically paired with the estimates of elevation angles,are finally obtained by sparse restoration associated with this latter elevation-azimuth angle related covariance vector. Simulation results are included to illustrate the performance of the proposed method.