局部遮阴条件下光伏阵列的功率-电压特性曲线出现多个峰值,传统最大功率点跟踪(maximum power point tracking, MPPT)技术无法准确追踪到全局最大功率点。针对该问题提出一种基于改进算术优化算法(improved arithmetic optimization alg...局部遮阴条件下光伏阵列的功率-电压特性曲线出现多个峰值,传统最大功率点跟踪(maximum power point tracking, MPPT)技术无法准确追踪到全局最大功率点。针对该问题提出一种基于改进算术优化算法(improved arithmetic optimization algorithm, IAOA)的MPPT控制方法。首先,采用Sobol序列生成均匀分布的初始种群,增加种群多样性。其次,为了平衡算术优化算法(arithmetic optimization algorithm, AOA)的全局搜索和局部开发能力,对AOA中数学优化器加速函数的权重进行重构。最后,在AOA的位置更新中引入Lévy飞行策略,并将准反向学习用于每次更新后的最佳解,增强了算法的收敛速度和跳出局部最优的能力。仿真和实验结果表明,将改进后的算法应用于MPPT控制中,能够在不同的局部遮阴及光照突变条件下准确、快速地跟踪到全局最大功率点,且功率振荡小。展开更多
针对电池储能(battery energy storage system,BESS)平抑风电波动过程中电池单元荷电状态(state of charge,SOC)均衡性较差且未考虑风储净收益的问题,提出了风电波动平抑下考虑SOC均衡及收益的BESS功率分配策略。首先,建立综合考虑售电...针对电池储能(battery energy storage system,BESS)平抑风电波动过程中电池单元荷电状态(state of charge,SOC)均衡性较差且未考虑风储净收益的问题,提出了风电波动平抑下考虑SOC均衡及收益的BESS功率分配策略。首先,建立综合考虑售电收益、弃风惩罚、缺电惩罚及BESS运行成本等多个因素的风电并网指令优化模型,以并网指令波动率、电池组SOC标准差等多个因素为约束条件,提出改进算术优化算法(improved arithmetic optimization algorithm,IAOA)求解该优化模型。然后,将BESS划分为两个电池组,设计了BESS双层功率分配方法(double-layer power allocation method,DPAM),上层将BESS充放电指令分配给两个电池组,下层根据最大充放电功率原则或新型SOC均衡原则将电池组充放电指令分配给各自的电池单元。最后,通过仿真对所提策略进行了验证。仿真结果表明:IAOA加快了寻优速度,提高了寻优精度;DPAM提升了电池组内电池单元SOC的均衡速度,改善了均衡程度;提出的功率分配策略进一步降低了风电并网波动率,同时提高了风储系统净收益。展开更多
文摘针对电池储能(battery energy storage system,BESS)平抑风电波动过程中电池单元荷电状态(state of charge,SOC)均衡性较差且未考虑风储净收益的问题,提出了风电波动平抑下考虑SOC均衡及收益的BESS功率分配策略。首先,建立综合考虑售电收益、弃风惩罚、缺电惩罚及BESS运行成本等多个因素的风电并网指令优化模型,以并网指令波动率、电池组SOC标准差等多个因素为约束条件,提出改进算术优化算法(improved arithmetic optimization algorithm,IAOA)求解该优化模型。然后,将BESS划分为两个电池组,设计了BESS双层功率分配方法(double-layer power allocation method,DPAM),上层将BESS充放电指令分配给两个电池组,下层根据最大充放电功率原则或新型SOC均衡原则将电池组充放电指令分配给各自的电池单元。最后,通过仿真对所提策略进行了验证。仿真结果表明:IAOA加快了寻优速度,提高了寻优精度;DPAM提升了电池组内电池单元SOC的均衡速度,改善了均衡程度;提出的功率分配策略进一步降低了风电并网波动率,同时提高了风储系统净收益。