We present a method for derivation of the density matrix of an arbitrary multi-mode continuous variable Gaussian entangled state from its phase space representation.An explicit computer algorithm is given to reconstru...We present a method for derivation of the density matrix of an arbitrary multi-mode continuous variable Gaussian entangled state from its phase space representation.An explicit computer algorithm is given to reconstruct the density matrix from Gaussian covariance matrix and quadrature average values.As an example,we apply our method to the derivation of three-mode symmetric continuous variable entangled state.Our method can be used to analyze the entanglement and correlation in continuous variable quantum network with multi-mode quantum entanglement states.展开更多
The algebraic collapsing acceleration(ACA)technique maximizes the use of geometric flexibility of the method of characteristics(MOC).The spatial grids for loworder ACA are the same as the high-order transport,which ma...The algebraic collapsing acceleration(ACA)technique maximizes the use of geometric flexibility of the method of characteristics(MOC).The spatial grids for loworder ACA are the same as the high-order transport,which makes the numerical solution of ACA equations costly,especially for large-size problems.To speed-up the MOC transport iterations effectively for general geometry,a coarse-mesh ACA method that involves selectively merging fine-mesh cells with identical materials,called material-mesh ACA(MMACA),is presented.The energy group batching(EGB)strategy in the tracing process is proposed to increase the parallel efficiency for microscopic crosssection problems.Microscopic and macroscopic crosssection benchmark problems are used to validate and analyse the accuracy and efficiency of the MMACA method.The maximum errors in the multiplication factor and pin power distributions are from the VERA-4 B-2 D case with silver-indium-cadmium(AIC)control rods inserted and are 104 pcm and 1.97%,respectively.Compared with the single-thread ACA solution,the maximum speed-up ratio reached 25 on 12 CPU cores for microscopic cross-section VERA-4-2 D problem.For the C5 G7-2 D and LRA-2 D benchmarks,the MMACA method can reduce the computation time by approximately one half.The present work proposes the MMACA method and demonstrates its ability to effectively accelerate MOC transport iterations.展开更多
A computational procedure is developed to solve the problems of coupled motion of a structure and a viscous incompressible fluid. In order to incorporate the effect of the moving surface of the structure as well as th...A computational procedure is developed to solve the problems of coupled motion of a structure and a viscous incompressible fluid. In order to incorporate the effect of the moving surface of the structure as well as the free surface motion, the arbitrary Lagrangian-Eulerian formulation is employed as the basis of the finite element spatial discretization. For numerical integration in time, the fraction,step method is used. This method is useful because one can use the same linear interpolation function for both velocity and pressure. The method is applied to the nonlinear interaction of a structure and a tuned liquid damper. All computations are performed with a personal computer.展开更多
Combining the strengths of Lagrangian and Eulerian descriptions,the coupled Lagrangian–Eulerian methods play an increasingly important role in various subjects.This work reviews their development and application in o...Combining the strengths of Lagrangian and Eulerian descriptions,the coupled Lagrangian–Eulerian methods play an increasingly important role in various subjects.This work reviews their development and application in ocean engineering.Initially,we briefly outline the advantages and disadvantages of the Lagrangian and Eulerian descriptions and the main characteristics of the coupled Lagrangian–Eulerian approach.Then,following the developmental trajectory of these methods,the fundamental formulations and the frameworks of various approaches,including the arbitrary Lagrangian–Eulerian finite element method,the particle-in-cell method,the material point method,and the recently developed Lagrangian–Eulerian stabilized collocation method,are detailedly reviewed.In addition,the article reviews the research progress of these methods with applications in ocean hydrodynamics,focusing on free surface flows,numerical wave generation,wave overturning and breaking,interactions between waves and coastal structures,fluid–rigid body interactions,fluid–elastic body interactions,multiphase flow problems and visualization of ocean flows,etc.Furthermore,the latest research advancements in the numerical stability,accuracy,efficiency,and consistency of the coupled Lagrangian–Eulerian particle methods are reviewed;these advancements enable efficient and highly accurate simulation of complicated multiphysics problems in ocean and coastal engineering.By building on these works,the current challenges and future directions of the hybrid Lagrangian–Eulerian particle methods are summarized.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 11574400 and 11204379the Beijing Institute of Technology Research Fund Program for Young Scholarsthe NSFC-ICTP Proposal under Grant No 11981240356
文摘We present a method for derivation of the density matrix of an arbitrary multi-mode continuous variable Gaussian entangled state from its phase space representation.An explicit computer algorithm is given to reconstruct the density matrix from Gaussian covariance matrix and quadrature average values.As an example,we apply our method to the derivation of three-mode symmetric continuous variable entangled state.Our method can be used to analyze the entanglement and correlation in continuous variable quantum network with multi-mode quantum entanglement states.
基金supported by the Chinese TMSR Strategic Pioneer Science and Technology Project(No.XDA02010000)the Frontier Science Key Program of the Chinese Academy of Sciences(No.QYZDY-SSW-JSC016)。
文摘The algebraic collapsing acceleration(ACA)technique maximizes the use of geometric flexibility of the method of characteristics(MOC).The spatial grids for loworder ACA are the same as the high-order transport,which makes the numerical solution of ACA equations costly,especially for large-size problems.To speed-up the MOC transport iterations effectively for general geometry,a coarse-mesh ACA method that involves selectively merging fine-mesh cells with identical materials,called material-mesh ACA(MMACA),is presented.The energy group batching(EGB)strategy in the tracing process is proposed to increase the parallel efficiency for microscopic crosssection problems.Microscopic and macroscopic crosssection benchmark problems are used to validate and analyse the accuracy and efficiency of the MMACA method.The maximum errors in the multiplication factor and pin power distributions are from the VERA-4 B-2 D case with silver-indium-cadmium(AIC)control rods inserted and are 104 pcm and 1.97%,respectively.Compared with the single-thread ACA solution,the maximum speed-up ratio reached 25 on 12 CPU cores for microscopic cross-section VERA-4-2 D problem.For the C5 G7-2 D and LRA-2 D benchmarks,the MMACA method can reduce the computation time by approximately one half.The present work proposes the MMACA method and demonstrates its ability to effectively accelerate MOC transport iterations.
文摘A computational procedure is developed to solve the problems of coupled motion of a structure and a viscous incompressible fluid. In order to incorporate the effect of the moving surface of the structure as well as the free surface motion, the arbitrary Lagrangian-Eulerian formulation is employed as the basis of the finite element spatial discretization. For numerical integration in time, the fraction,step method is used. This method is useful because one can use the same linear interpolation function for both velocity and pressure. The method is applied to the nonlinear interaction of a structure and a tuned liquid damper. All computations are performed with a personal computer.
基金the support received from the Laoshan Laboratory(No.LSKJ202202000)the National Natural Science Foundation of China(Grant Nos.12032002,U22A20256,and 12302253)the Natural Science Foundation of Beijing(No.L212023)for partially funding this work.
文摘Combining the strengths of Lagrangian and Eulerian descriptions,the coupled Lagrangian–Eulerian methods play an increasingly important role in various subjects.This work reviews their development and application in ocean engineering.Initially,we briefly outline the advantages and disadvantages of the Lagrangian and Eulerian descriptions and the main characteristics of the coupled Lagrangian–Eulerian approach.Then,following the developmental trajectory of these methods,the fundamental formulations and the frameworks of various approaches,including the arbitrary Lagrangian–Eulerian finite element method,the particle-in-cell method,the material point method,and the recently developed Lagrangian–Eulerian stabilized collocation method,are detailedly reviewed.In addition,the article reviews the research progress of these methods with applications in ocean hydrodynamics,focusing on free surface flows,numerical wave generation,wave overturning and breaking,interactions between waves and coastal structures,fluid–rigid body interactions,fluid–elastic body interactions,multiphase flow problems and visualization of ocean flows,etc.Furthermore,the latest research advancements in the numerical stability,accuracy,efficiency,and consistency of the coupled Lagrangian–Eulerian particle methods are reviewed;these advancements enable efficient and highly accurate simulation of complicated multiphysics problems in ocean and coastal engineering.By building on these works,the current challenges and future directions of the hybrid Lagrangian–Eulerian particle methods are summarized.