高比例新能源的接入对电力系统既是机遇也是挑战:新能源具有清洁低碳的环保优势,但其出力不确定性大、物理惯量低的特点也对系统的频率安全运行带来挑战。针对上述问题,提出一种考虑碳-绿证市场耦合的新能源与储能虚拟惯量-阻尼调度方...高比例新能源的接入对电力系统既是机遇也是挑战:新能源具有清洁低碳的环保优势,但其出力不确定性大、物理惯量低的特点也对系统的频率安全运行带来挑战。针对上述问题,提出一种考虑碳-绿证市场耦合的新能源与储能虚拟惯量-阻尼调度方法。首先,构建包含电力决策、碳交易市场和绿证交易市场三者耦合关系,并计及系统动态频率安全约束的虚拟惯量-阻尼调度优化模型;其次,为降低决策保守性,将不确定性约束建模为整体的联合机会约束形式;然后,采用改进的样本平均近似(modified sample average approximation, MSAA)方法对所提模型进行求解,有效规避常规样本平均近似(sample average approximation, SAA)方法中0-1指示变量导致的计算负担。在IEEE-39节点系统的仿真结果表明:与现有模型和机会约束建模方法相比,所提方法能够根据系统时变扰动需求自适应调整虚拟惯量和下垂阻尼,在满足风险概率5%的前提下,以比固定系数方法低6.03%的成本,确保系统频率偏差在0.5 Hz以内。展现出更好的经济性、低碳性和频率安全性;同时,改进的MSAA方法较传统SAA方法计算时间减少了约90%,可显著提升计算效率。展开更多
经典一维装箱问题在多处理器调度、资源分配和日常生活中的计划、包装、调度等优化问题中有着极为重要的应用 .该文系统地分析了在待处理的物品大小相互独立的情况下 ,L ee & L ee提出的调和近似装箱算法的平均性能 ;具体给出了在...经典一维装箱问题在多处理器调度、资源分配和日常生活中的计划、包装、调度等优化问题中有着极为重要的应用 .该文系统地分析了在待处理的物品大小相互独立的情况下 ,L ee & L ee提出的调和近似装箱算法的平均性能 ;具体给出了在均匀分布下 ,调和算法平均性能比的值 ,并用实验验证了这些结果 .展开更多
空间信号源数检测是阵列信号处理的关键问题之一,该文针对低信噪比下传统检测方法的性能差的问题,提出了一种基于近似特征向量的检测新方法DTAE(Detection Technique based on Approximate Eigenvectors)来改善低信噪比下传感器阵列的...空间信号源数检测是阵列信号处理的关键问题之一,该文针对低信噪比下传统检测方法的性能差的问题,提出了一种基于近似特征向量的检测新方法DTAE(Detection Technique based on Approximate Eigenvectors)来改善低信噪比下传感器阵列的信源数检测性能。该方法首先利用波束形成器在空间做预扫描来估计信号群中心的位置,以这些位置作为参考方向计算接收数据协方差矩阵的特征向量的近似值,然后使用特征向量的近似值对阵列输出数据加权,最后计算加权输出数据的频域峰值-平均功率比值从而估计信号源的个数。仿真结果表明,提出的新方法在低信噪比下的检测性能显著优于AIC(Akaike Information Criterion)等方法,有一定的工程应用价值。展开更多
文摘高比例新能源的接入对电力系统既是机遇也是挑战:新能源具有清洁低碳的环保优势,但其出力不确定性大、物理惯量低的特点也对系统的频率安全运行带来挑战。针对上述问题,提出一种考虑碳-绿证市场耦合的新能源与储能虚拟惯量-阻尼调度方法。首先,构建包含电力决策、碳交易市场和绿证交易市场三者耦合关系,并计及系统动态频率安全约束的虚拟惯量-阻尼调度优化模型;其次,为降低决策保守性,将不确定性约束建模为整体的联合机会约束形式;然后,采用改进的样本平均近似(modified sample average approximation, MSAA)方法对所提模型进行求解,有效规避常规样本平均近似(sample average approximation, SAA)方法中0-1指示变量导致的计算负担。在IEEE-39节点系统的仿真结果表明:与现有模型和机会约束建模方法相比,所提方法能够根据系统时变扰动需求自适应调整虚拟惯量和下垂阻尼,在满足风险概率5%的前提下,以比固定系数方法低6.03%的成本,确保系统频率偏差在0.5 Hz以内。展现出更好的经济性、低碳性和频率安全性;同时,改进的MSAA方法较传统SAA方法计算时间减少了约90%,可显著提升计算效率。
文摘空间信号源数检测是阵列信号处理的关键问题之一,该文针对低信噪比下传统检测方法的性能差的问题,提出了一种基于近似特征向量的检测新方法DTAE(Detection Technique based on Approximate Eigenvectors)来改善低信噪比下传感器阵列的信源数检测性能。该方法首先利用波束形成器在空间做预扫描来估计信号群中心的位置,以这些位置作为参考方向计算接收数据协方差矩阵的特征向量的近似值,然后使用特征向量的近似值对阵列输出数据加权,最后计算加权输出数据的频域峰值-平均功率比值从而估计信号源的个数。仿真结果表明,提出的新方法在低信噪比下的检测性能显著优于AIC(Akaike Information Criterion)等方法,有一定的工程应用价值。