The water Cherenkov detector array(WCDA) is an important part of the large high-altitude air shower observatory(LHAASO),which is in a research and development phase.The central scientific goal of LHAASO is to explore ...The water Cherenkov detector array(WCDA) is an important part of the large high-altitude air shower observatory(LHAASO),which is in a research and development phase.The central scientific goal of LHAASO is to explore the origin of high-energy cosmic rays of the universe and to push forward the frontier of new physics.To simplify the WCDA's readout electronics,a prototype of a front-end readout for an application-specific integrated circuit(ASIC) is designed based on the timeover-threshold method to achieve charge-to-time conversion.High-precision time measurement and charge measurement are necessary over a full dynamic range[1-4000photoelectrons(P.E.)].To evaluate the performance of this ASIC,a test system is designed that includes the front-end ASIC test module,digitization module,and test software.The first module needs to be customized for different ASIC versions,whereas the digitization module and test software are tested for general-purpose use.In the digitization module,a field programmable gate array-based time-todigital converter is designed with a bin size of 333 ps,which also integrates an inter-integrated circuit to configure the ASIC test module,and a universal serial bus interface is designed to transfer data to the remote computer.Test results indicate that the time resolution is better than 0.5 ns,and the charge resolution is better than 30%root mean square(RMS) at 1 P.E.and 3%RMS at 4000 P.E.,which are beyond the application requirements.展开更多
为了提高水轮机调速器的可靠性,对全数字式水轮机调速器进行了研究,它以可编程控制器(PLC)为基础,结合专用集成电路技术(application specific integrated circuit,ASIC)进行测频和位移测量,同时采用一个全数字式的液压控制系统——数...为了提高水轮机调速器的可靠性,对全数字式水轮机调速器进行了研究,它以可编程控制器(PLC)为基础,结合专用集成电路技术(application specific integrated circuit,ASIC)进行测频和位移测量,同时采用一个全数字式的液压控制系统——数字阀插装阀并联液压控制系统,从而构成一个真正的全数字式水轮机调速器,即从信号的采集到控制的输出全部实现了数字化.在水轮机调速器半物理仿真实验台上进行了实验.结果表明,它的控制性能良好,可以满足水轮机对调速器的要求.展开更多
An application specific integrated circuit (ASIC) design of a 1024 points floating-point fast Fourier transform(FFT) processor is presented. It can satisfy the requirement of high accuracy FFT result in related fields...An application specific integrated circuit (ASIC) design of a 1024 points floating-point fast Fourier transform(FFT) processor is presented. It can satisfy the requirement of high accuracy FFT result in related fields. Several novel design techniques for floating-point adder and multiplier are introduced in detail to enhance the speed of the system. At the same time, the power consumption is decreased. The hardware area is effectively reduced as an improved butterfly processor is developed. There is a substantial increase in the performance of the design since a pipelined architecture is adopted, and very large scale integrated (VLSI) is easy to realize due to the regularity. A result of validation using field programmable gate array (FPGA) is shown at the end. When the system clock is set to 50 MHz, 204.8 μs is needed to complete the operation of FFT computation.展开更多
基于0.25μm 5 V/12 V 1P3M高压BCD(BJT/CMOS/DMOS)工艺设计实现了一款独立式低压光电式烟雾探测器专用集成电路(ASIC)。分析了系统原理,重点设计了烟雾探测和DC-DC升压电路。其中,烟雾探测电路通过对光电流信号依次进行积分、6 bit...基于0.25μm 5 V/12 V 1P3M高压BCD(BJT/CMOS/DMOS)工艺设计实现了一款独立式低压光电式烟雾探测器专用集成电路(ASIC)。分析了系统原理,重点设计了烟雾探测和DC-DC升压电路。其中,烟雾探测电路通过对光电流信号依次进行积分、6 bit ADC量化以及与限制值比较等处理来判断是否有烟雾,电路内部嵌入了多次可擦写(MTP)存储单元用于限制值的数字编程,提高了探测精度和终端产品的生产效率。DC-DC升压电路可将1.8~5.5 V的输入电压转换为3.3~12 V的输出电压,用于驱动蜂鸣器和LED等负载。测试结果显示,芯片的功能和性能指标达到设计要求,待机静态电流仅约0.6μA,对低至0.9 n A的输入光电流信号可进行有效探测。展开更多
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences(KJCX2-YW-N27)the CAS Center for Excellence in Particle Physics(CCEPP)
文摘The water Cherenkov detector array(WCDA) is an important part of the large high-altitude air shower observatory(LHAASO),which is in a research and development phase.The central scientific goal of LHAASO is to explore the origin of high-energy cosmic rays of the universe and to push forward the frontier of new physics.To simplify the WCDA's readout electronics,a prototype of a front-end readout for an application-specific integrated circuit(ASIC) is designed based on the timeover-threshold method to achieve charge-to-time conversion.High-precision time measurement and charge measurement are necessary over a full dynamic range[1-4000photoelectrons(P.E.)].To evaluate the performance of this ASIC,a test system is designed that includes the front-end ASIC test module,digitization module,and test software.The first module needs to be customized for different ASIC versions,whereas the digitization module and test software are tested for general-purpose use.In the digitization module,a field programmable gate array-based time-todigital converter is designed with a bin size of 333 ps,which also integrates an inter-integrated circuit to configure the ASIC test module,and a universal serial bus interface is designed to transfer data to the remote computer.Test results indicate that the time resolution is better than 0.5 ns,and the charge resolution is better than 30%root mean square(RMS) at 1 P.E.and 3%RMS at 4000 P.E.,which are beyond the application requirements.
文摘为了提高水轮机调速器的可靠性,对全数字式水轮机调速器进行了研究,它以可编程控制器(PLC)为基础,结合专用集成电路技术(application specific integrated circuit,ASIC)进行测频和位移测量,同时采用一个全数字式的液压控制系统——数字阀插装阀并联液压控制系统,从而构成一个真正的全数字式水轮机调速器,即从信号的采集到控制的输出全部实现了数字化.在水轮机调速器半物理仿真实验台上进行了实验.结果表明,它的控制性能良好,可以满足水轮机对调速器的要求.
文摘An application specific integrated circuit (ASIC) design of a 1024 points floating-point fast Fourier transform(FFT) processor is presented. It can satisfy the requirement of high accuracy FFT result in related fields. Several novel design techniques for floating-point adder and multiplier are introduced in detail to enhance the speed of the system. At the same time, the power consumption is decreased. The hardware area is effectively reduced as an improved butterfly processor is developed. There is a substantial increase in the performance of the design since a pipelined architecture is adopted, and very large scale integrated (VLSI) is easy to realize due to the regularity. A result of validation using field programmable gate array (FPGA) is shown at the end. When the system clock is set to 50 MHz, 204.8 μs is needed to complete the operation of FFT computation.
文摘基于0.25μm 5 V/12 V 1P3M高压BCD(BJT/CMOS/DMOS)工艺设计实现了一款独立式低压光电式烟雾探测器专用集成电路(ASIC)。分析了系统原理,重点设计了烟雾探测和DC-DC升压电路。其中,烟雾探测电路通过对光电流信号依次进行积分、6 bit ADC量化以及与限制值比较等处理来判断是否有烟雾,电路内部嵌入了多次可擦写(MTP)存储单元用于限制值的数字编程,提高了探测精度和终端产品的生产效率。DC-DC升压电路可将1.8~5.5 V的输入电压转换为3.3~12 V的输出电压,用于驱动蜂鸣器和LED等负载。测试结果显示,芯片的功能和性能指标达到设计要求,待机静态电流仅约0.6μA,对低至0.9 n A的输入光电流信号可进行有效探测。