This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satell...This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satellites. Hence, the mission planning and scheduling of AEOS is a popular research problem. This research investigates AEOS characteristics and establishes a mission planning model based on the working principle and constraints of AEOS as per analysis. To solve the scheduling issue of AEOS, several improved algorithms are developed. Simulation results suggest that these algorithms are effective.展开更多
To solve dynamic obstacle avoidance problems, a novel algorithm was put forward with the advantages of wireless sensor network (WSN). In view of moving velocity and direction of both the obstacles and robots, a mathem...To solve dynamic obstacle avoidance problems, a novel algorithm was put forward with the advantages of wireless sensor network (WSN). In view of moving velocity and direction of both the obstacles and robots, a mathematic model was built based on the exposure model, exposure direction and critical speeds of sensors. Ant colony optimization (ACO) algorithm based on bionic swarm intelligence was used for solution of the multi-objective optimization. Energy consumption and topology of the WSN were also discussed. A practical implementation with real WSN and real mobile robots were carried out. In environment with multiple obstacles, the convergence curve of the shortest path length shows that as iterative generation grows, the length of the shortest path decreases and finally reaches a stable and optimal value. Comparisons show that using sensor information fusion can greatly improve the accuracy in comparison with single sensor. The successful path of robots without collision validates the efficiency, stability and accuracy of the proposed algorithm, which is proved to be better than tradition genetic algorithm (GA) for dynamic obstacle avoidance in real time.展开更多
为解决现有粒子群改进策略无法帮助已陷入局部最优和过早收敛的粒子恢复寻优性能的问题,提出一种陷阱标记联合懒蚂蚁的自适应粒子群优化(adaptive particle swarm optimization based on trap label and lazy ant, TLLA-APSO)算法。陷...为解决现有粒子群改进策略无法帮助已陷入局部最优和过早收敛的粒子恢复寻优性能的问题,提出一种陷阱标记联合懒蚂蚁的自适应粒子群优化(adaptive particle swarm optimization based on trap label and lazy ant, TLLA-APSO)算法。陷阱标记策略为粒子群提供动态速度增量,使其摆脱最优解的束缚。利用懒蚂蚁寻优策略多样化粒子速度,提升种群多样性。通过惯性认知策略在速度更新中引入历史位置,增加粒子的路径多样性和提升粒子的探索性能,使粒子更有效地避免陷入新的局部最优。理论证明了引入历史位置的粒子群算法的收敛性。仿真实验结果表明,所提算法不仅能有效解决粒子群已陷入局部最优和过早收敛的问题,且与其他算法相比,具有较快的收敛速度和较高的寻优精度。展开更多
为解决快速扩展随机树算法(rapid-exploration random tree,RRT*)在三维环境中盲目搜索路径以及缺乏节点扩展记忆性等问题,提出一种融合蚁群算法的双向搜索算法ACO-RRT*。为适应精细化三维建模环境和解决地面起伏不平坦等问题,对RRT*算...为解决快速扩展随机树算法(rapid-exploration random tree,RRT*)在三维环境中盲目搜索路径以及缺乏节点扩展记忆性等问题,提出一种融合蚁群算法的双向搜索算法ACO-RRT*。为适应精细化三维建模环境和解决地面起伏不平坦等问题,对RRT*算法进行改进优化。采用双向搜索策略,在起点和终点同时运行改进后的RRT算法和蚁群算法,相向而行,对路径长度和运行时间进行优化。针对生成路径不够平滑等问题,引入B样条曲线平滑策略优化路径。仿真结果表明,所提算法能够有效用于机器人三维路径规划。展开更多
文摘蛋白质含量是衡量稻米品质的关键因素之一。为探索利用光谱数据融合技术实现稻米蛋白质含量快速检测的潜力,试验提出了一种改进的二进制粒子群优化算法(Improved binary particle swarm optimization,IBPSO),该算法专门用于拉曼光谱与近红外光谱(R aman-NIR)融合数据的特征波长选择,能有效提升基于偏最小二乘法(Partial least squares,PLS)的回归校正模型的预测准确性。采用IBPSO构建的大米蛋白质含量检测模型,其预测决定系数(R_(p)^(2))达到了0.903,预测均方根误差(Root mean square error of prediction,RMSEP)为0.235%,预测平均相对误差(Mean relative error of prediction,MREP)则为2.768%,这些性能指标均优于采用其他4种经典算法进行特征波长选择后所建立的模型。结果表明:IBPSO通过粒子值为“1”二进制位的指导性寻优,能够实现高相关性建模波长变量的高效获取;IBPSO与光谱数据融合技术相结合能够实现大米蛋白质含量的快速检测,为相关在线检测装备的研发提供了理论支持。
基金supported by the National Natural Science Foundation of China(7127106671171065+1 种基金71202168)the Natural Science Foundation of Heilongjiang Province(GC13D506)
文摘This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satellites. Hence, the mission planning and scheduling of AEOS is a popular research problem. This research investigates AEOS characteristics and establishes a mission planning model based on the working principle and constraints of AEOS as per analysis. To solve the scheduling issue of AEOS, several improved algorithms are developed. Simulation results suggest that these algorithms are effective.
基金Project(60475035) supported by the National Natural Science Foundation of China
文摘To solve dynamic obstacle avoidance problems, a novel algorithm was put forward with the advantages of wireless sensor network (WSN). In view of moving velocity and direction of both the obstacles and robots, a mathematic model was built based on the exposure model, exposure direction and critical speeds of sensors. Ant colony optimization (ACO) algorithm based on bionic swarm intelligence was used for solution of the multi-objective optimization. Energy consumption and topology of the WSN were also discussed. A practical implementation with real WSN and real mobile robots were carried out. In environment with multiple obstacles, the convergence curve of the shortest path length shows that as iterative generation grows, the length of the shortest path decreases and finally reaches a stable and optimal value. Comparisons show that using sensor information fusion can greatly improve the accuracy in comparison with single sensor. The successful path of robots without collision validates the efficiency, stability and accuracy of the proposed algorithm, which is proved to be better than tradition genetic algorithm (GA) for dynamic obstacle avoidance in real time.
文摘为解决现有粒子群改进策略无法帮助已陷入局部最优和过早收敛的粒子恢复寻优性能的问题,提出一种陷阱标记联合懒蚂蚁的自适应粒子群优化(adaptive particle swarm optimization based on trap label and lazy ant, TLLA-APSO)算法。陷阱标记策略为粒子群提供动态速度增量,使其摆脱最优解的束缚。利用懒蚂蚁寻优策略多样化粒子速度,提升种群多样性。通过惯性认知策略在速度更新中引入历史位置,增加粒子的路径多样性和提升粒子的探索性能,使粒子更有效地避免陷入新的局部最优。理论证明了引入历史位置的粒子群算法的收敛性。仿真实验结果表明,所提算法不仅能有效解决粒子群已陷入局部最优和过早收敛的问题,且与其他算法相比,具有较快的收敛速度和较高的寻优精度。
文摘为解决快速扩展随机树算法(rapid-exploration random tree,RRT*)在三维环境中盲目搜索路径以及缺乏节点扩展记忆性等问题,提出一种融合蚁群算法的双向搜索算法ACO-RRT*。为适应精细化三维建模环境和解决地面起伏不平坦等问题,对RRT*算法进行改进优化。采用双向搜索策略,在起点和终点同时运行改进后的RRT算法和蚁群算法,相向而行,对路径长度和运行时间进行优化。针对生成路径不够平滑等问题,引入B样条曲线平滑策略优化路径。仿真结果表明,所提算法能够有效用于机器人三维路径规划。