期刊文献+
共找到1,744篇文章
< 1 2 88 >
每页显示 20 50 100
Bayesian-based ant colony optimization algorithm for edge detection
1
作者 YU Yongbin ZHONG Yuanjingyang +6 位作者 FENG Xiao WANG Xiangxiang FAVOUR Ekong ZHOU Chen CHENG Man WANG Hao WANG Jingya 《Journal of Systems Engineering and Electronics》 2025年第4期892-902,共11页
Ant colony optimization(ACO)is a random search algorithm based on probability calculation.However,the uninformed search strategy has a slow convergence speed.The Bayesian algorithm uses the historical information of t... Ant colony optimization(ACO)is a random search algorithm based on probability calculation.However,the uninformed search strategy has a slow convergence speed.The Bayesian algorithm uses the historical information of the searched point to determine the next search point during the search process,reducing the uncertainty in the random search process.Due to the ability of the Bayesian algorithm to reduce uncertainty,a Bayesian ACO algorithm is proposed in this paper to increase the convergence speed of the conventional ACO algorithm for image edge detection.In addition,this paper has the following two innovations on the basis of the classical algorithm,one of which is to add random perturbations after completing the pheromone update.The second is the use of adaptive pheromone heuristics.Experimental results illustrate that the proposed Bayesian ACO algorithm has faster convergence and higher precision and recall than the traditional ant colony algorithm,due to the improvement of the pheromone utilization rate.Moreover,Bayesian ACO algorithm outperforms the other comparative methods in edge detection task. 展开更多
关键词 ant colony optimization(ACO) Bayesian algorithm edge detection transfer function.
在线阅读 下载PDF
Improved ant colony optimization algorithm for the traveling salesman problems 被引量:22
2
作者 Rongwei Gan Qingshun Guo +1 位作者 Huiyou Chang Yang Yi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第2期329-333,共5页
Ant colony optimization (ACO) is a new heuristic algo- rithm which has been proven a successful technique and applied to a number of combinatorial optimization problems. The traveling salesman problem (TSP) is amo... Ant colony optimization (ACO) is a new heuristic algo- rithm which has been proven a successful technique and applied to a number of combinatorial optimization problems. The traveling salesman problem (TSP) is among the most important combinato- rial problems. An ACO algorithm based on scout characteristic is proposed for solving the stagnation behavior and premature con- vergence problem of the basic ACO algorithm on TSP. The main idea is to partition artificial ants into two groups: scout ants and common ants. The common ants work according to the search manner of basic ant colony algorithm, but scout ants have some differences from common ants, they calculate each route's muta- tion probability of the current optimal solution using path evaluation model and search around the optimal solution according to the mutation probability. Simulation on TSP shows that the improved algorithm has high efficiency and robustness. 展开更多
关键词 ant colony optimization heuristic algorithm scout ants path evaluation model traveling salesman problem.
在线阅读 下载PDF
Ant colony optimization algorithm and its application to Neuro-Fuzzy controller design 被引量:11
3
作者 Zhao Baojiang Li Shiyong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第3期603-610,共8页
An adaptive ant colony algorithm is proposed based on dynamically adjusting the strategy of updating trail information. The algorithm can keep good balance between accelerating convergence and averting precocity and s... An adaptive ant colony algorithm is proposed based on dynamically adjusting the strategy of updating trail information. The algorithm can keep good balance between accelerating convergence and averting precocity and stagnation. The results of function optimization show that the algorithm has good searching ability and high convergence speed. The algorithm is employed to design a neuro-fuzzy controller for real-time control of an inverted pendulum. In order to avoid the combinatorial explosion of fuzzy rules due tσ multivariable inputs, a state variable synthesis scheme is employed to reduce the number of fuzzy rules greatly. The simulation results show that the designed controller can control the inverted pendulum successfully. 展开更多
关键词 neuro-fuzzy controller ant colony algorithm function optimization genetic algorithm inverted pen-dulum system.
在线阅读 下载PDF
Hybrid ant colony optimization for the resource-constrained project scheduling problem 被引量:10
4
作者 Linyi Deng Yan Lin Ming Chen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第1期67-71,共5页
To solve the resource-constrained project scheduling problem (RCPSP), a hybrid ant colony optimization (HACO) approach is presented. To improve the quality of the schedules, the HACO is incorporated with an extend... To solve the resource-constrained project scheduling problem (RCPSP), a hybrid ant colony optimization (HACO) approach is presented. To improve the quality of the schedules, the HACO is incorporated with an extended double justification in which the activity splitting is applied to predict whether the schedule could be improved. The HACO is tested on the set of large benchmark problems from the project scheduling problem library (PSPLIB). The computational result shows that the proposed algo- rithm can improve the quality of the schedules efficiently. 展开更多
关键词 project scheduling double justification ant colony optimization activity splitting.
在线阅读 下载PDF
Weapon target assignment problem satisfying expected damage probabilities based on ant colony algorithm 被引量:26
5
作者 Wang Yanxia Qian Longjun Guo Zhi Ma Lifeng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第5期939-944,共6页
A weapon target assignment (WTA) model satisfying expected damage probabilities with an ant colony algorithm is proposed. In order to save armament resource and attack the targets effectively, the strategy of the we... A weapon target assignment (WTA) model satisfying expected damage probabilities with an ant colony algorithm is proposed. In order to save armament resource and attack the targets effectively, the strategy of the weapon assignment is that the target with greater threat degree has higher priority to be intercepted. The effect of this WTA model is not maximizing the damage probability but satisfying the whole assignment result. Ant colony algorithm has been successfully used in many fields, especially in combination optimization. The ant colony algorithm for this WTA problem is described by analyzing path selection, pheromone update, and tabu table update. The effectiveness of the model and the algorithm is demonstrated with an example. 展开更多
关键词 weapon target assignment ant colony algorithm optimization.
在线阅读 下载PDF
An optimal scheduling algorithm based on task duplication 被引量:2
6
作者 RuanYoulin LiuCan ZhuGuangxi LuXiaofeng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第2期445-450,共6页
When the communication time is relatively shorter than the computation time for every task, the task duplication based scheduling (TDS) algorithm proposed by Darbha and Agrawal generates an optimal schedule. Park and ... When the communication time is relatively shorter than the computation time for every task, the task duplication based scheduling (TDS) algorithm proposed by Darbha and Agrawal generates an optimal schedule. Park and Choe also proposed an extended TDS algorithm whose optimality condition is less restricted than that of TDS algorithm, but the condition is very complex and is difficult to satisfy when the number of tasks is large. An efficient algorithm is proposed whose optimality condition is less restricted and simpler than both of the algorithms, and the schedule length is also shorter than both of the algorithms. The time complexity of the proposed algorithm is O(v2), where v represents the number of tasks. 展开更多
关键词 optimal scheduling algorithm task duplication optimality condition.
在线阅读 下载PDF
Task scheduling for multi-electro-magnetic detection satellite with a combined algorithm 被引量:1
7
作者 Jianghan Zhu Lining Zhang +1 位作者 Dishan Qiu Haoping Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第1期88-98,共11页
Task scheduling for electro-magnetic detection satellite is a typical combinatorial optimization problem. The count of constraints that need to be taken into account is of large scale. An algorithm combined integer pr... Task scheduling for electro-magnetic detection satellite is a typical combinatorial optimization problem. The count of constraints that need to be taken into account is of large scale. An algorithm combined integer programming with constraint programming is presented. This algorithm is deployed in this problem through two steps. The first step is to decompose the original problem into master and sub-problem using the logic-based Benders decomposition; then a circus combines master and sub-problem solving process together, and the connection between them is general Benders cut. This hybrid algorithm is tested by a set of derived experiments. The result is compared with corresponding outcomes generated by the strength Pareto evolutionary algorithm and the pure constraint programming solver GECODE, which is an open source software. These tests and comparisons yield promising effect. 展开更多
关键词 task scheduling combined algorithm logic-based Benders decomposition combinatorial optimization constraint programming (CP).
在线阅读 下载PDF
Efficiency improvement of ant colony optimization in solving the moderate LTSP 被引量:1
8
作者 Munan Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第6期1301-1309,共9页
In solving small- to medium-scale travelling salesman problems (TSPs) of both symmetric and asymmetric types, the traditional ant colony optimization (ACO) algorithm could work well, providing high accuracy and sa... In solving small- to medium-scale travelling salesman problems (TSPs) of both symmetric and asymmetric types, the traditional ant colony optimization (ACO) algorithm could work well, providing high accuracy and satisfactory efficiency. However, when the scale of the TSP increases, ACO, a heuristic algorithm, is greatly challenged with respect to accuracy and efficiency. A novel pheromone-trail updating strategy that moderately reduces the iteration time required in real optimization problem-solving is proposed. In comparison with the traditional strategy of the ACO in several experiments, the proposed strategy shows advantages in performance. Therefore, this strategy of pheromone-trail updating is proposed as a valuable approach that reduces the time-complexity and increases its efficiency with less iteration time in real optimization applications. Moreover, this strategy is especially applicable in solving the moderate large-scale TSPs based on ACO. 展开更多
关键词 ant colony optimization (ACO) travelling salesmanproblem (TSP) time-complexity of algorithm pheromone-trail up-dating.
在线阅读 下载PDF
Multi-satellite observation integrated scheduling method oriented to emergency tasks and common tasks 被引量:23
9
作者 Guohua Wu Manhao Ma +1 位作者 Jianghan Zhu Dishan Qiu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第5期723-733,共11页
Satellite observation scheduling plays a significant role in improving the efficiency of satellite observation systems.Although many scheduling algorithms have been proposed,emergency tasks,characterized as importance... Satellite observation scheduling plays a significant role in improving the efficiency of satellite observation systems.Although many scheduling algorithms have been proposed,emergency tasks,characterized as importance and urgency(e.g.,observation tasks orienting to the earthquake area and military conflict area),have not been taken into account yet.Therefore,it is crucial to investigate the satellite integrated scheduling methods,which focus on meeting the requirements of emergency tasks while maximizing the profit of common tasks.Firstly,a pretreatment approach is proposed,which eliminates conflicts among emergency tasks and allocates all tasks with a potential time-window to related orbits of satellites.Secondly,a mathematical model and an acyclic directed graph model are constructed.Thirdly,a hybrid ant colony optimization method mixed with iteration local search(ACO-ILS) is established to solve the problem.Moreover,to guarantee all solutions satisfying the emergency task requirement constraints,a constraint repair method is presented.Extensive experimental simulations show that the proposed integrated scheduling method is superior to two-phased scheduling methods,the performance of ACO-ILS is greatly improved in both evolution speed and solution quality by iteration local search,and ACO-ILS outperforms both genetic algorithm and simulated annealing algorithm. 展开更多
关键词 satellite scheduling emergency task ant colony optimization(ACO) iteration local search(ILS) acyclic directed graph model
在线阅读 下载PDF
Solving algorithm for TA optimization model based on ACO-SA 被引量:4
10
作者 Jun Wang Xiaoguang Gao Yongwen Zhu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第4期628-639,共12页
An ant colony optimization (ACO)-simulated annealing (SA)-based algorithm is developed for the target assignment problem (TAP) in the air defense (AD) command and control (C2) system of surface to air missi... An ant colony optimization (ACO)-simulated annealing (SA)-based algorithm is developed for the target assignment problem (TAP) in the air defense (AD) command and control (C2) system of surface to air missile (SAM) tactical unit. The accomplishment process of target assignment (TA) task is analyzed. A firing advantage degree (FAD) concept of fire unit (FU) intercepting targets is put forward and its evaluation model is established by using a linear weighted synthetic method. A TA optimization model is presented and its solving algorithms are designed respectively based on ACO and SA. A hybrid optimization strategy is presented and developed synthesizing the merits of ACO and SA. The simulation examples show that the model and algorithms can meet the solving requirement of TAP in AD combat. 展开更多
关键词 target assignment (TA) optimization ant colony optimization (ACO) algorithm simulated annealing (SA) algorithm hybrid optimization strategy.
在线阅读 下载PDF
基于阻塞栅格地图的煤矿救援机器人路径规划 被引量:1
11
作者 邵小强 刘明乾 +3 位作者 马博 李浩 吕植越 韩泽辉 《煤炭科学技术》 北大核心 2025年第7期249-261,共13页
针对矿难发生后,煤矿救援机器人面对井下复杂环境使用路径规划算法耗时太长,路径规划过程中产生冗余点过多且易陷入死锁的问题,提出一种基于类型匹配的栅格地图阻塞算法,该算法可通过迭代阻塞以减少栅格地图中无需探索的可通行节点数量... 针对矿难发生后,煤矿救援机器人面对井下复杂环境使用路径规划算法耗时太长,路径规划过程中产生冗余点过多且易陷入死锁的问题,提出一种基于类型匹配的栅格地图阻塞算法,该算法可通过迭代阻塞以减少栅格地图中无需探索的可通行节点数量。算法的阻塞过程利用定义的栅格节点和其邻节点构成的3×3子图类型与栅格地图进行匹配。首先根据路径规划算法的寻路特点定义可阻塞栅格类型和不可阻塞栅格类型;然后按照各种类型特征进行建模,为每种类型设置权重和偏置;最后将各类型子图与初始栅格地图通过二维卷积操作进行匹配以阻塞无需拓展节点,在使用基于栅格地图的路径规划算法之前对输入栅格地图进行阻塞处理。阻塞节点不会断开原始栅格地图中存在最小成本路径。结果表明:该算法可应用于各种栅格环境地图中,在真实煤矿井下栅格地图环境下,与单独使用路径规划算法相比,使用本文算法结合A*算法与仅使用A*算法相比,该算法结合A*算法路径规划总时间减少60.0%,拓展节点数量减少60.4%;结合蚁群算法与仅使用蚁群算法相比,该算法结合蚁群算法路径规划总时间减少55.8%,迭代次数减少53.7%。所提算法极大缩小了路径规划时间,解决了路径规划死锁问题,在复杂环境地图中优势明显,保证事故救援的及时性。 展开更多
关键词 煤矿救援机器人 栅格地图 阻塞栅格地图 A*算法 蚁群算法
在线阅读 下载PDF
双机器人的任务分配和协同作业算法研究
12
作者 李铁军 赵博言 +2 位作者 刘今越 贾晓辉 唐春瑞 《控制工程》 北大核心 2025年第4期577-585,共9页
针对双机器人难以实现合理的任务分配和协同作业的问题,提出了一种基于工作量平衡机制与主从协同蚁群优化算法完成双机器人的任务分配和协同作业的方法。首先,基于任务点集合建立不平衡任务指派模型,任务分配阶段通过迭代路径规划算法... 针对双机器人难以实现合理的任务分配和协同作业的问题,提出了一种基于工作量平衡机制与主从协同蚁群优化算法完成双机器人的任务分配和协同作业的方法。首先,基于任务点集合建立不平衡任务指派模型,任务分配阶段通过迭代路径规划算法平衡两机器人的工作量。然后,通过主从协同蚁群优化算法解算机器人之间避免干涉且保持工作量最小的多目标协同作业优化模型。最后,结合钢筋绑扎场景展开实验,实验结果表明,所提方法可以在两机器人之间实现合理的任务分配,减少二者的工作差异量,使其高效地完成钢筋绑扎作业,并且可以有效避免机器人在作业过程中发生干涉。 展开更多
关键词 双机器人 任务分配 主从协同 蚁群优化算法
在线阅读 下载PDF
基于ARIMA与GGACO算法的ETL任务调度机制研究
13
作者 周金治 刘艺涵 吴斌 《控制工程》 北大核心 2025年第2期208-215,共8页
随着抽取-转换-加载(extraction-transformation-loading,ETL)系统的ETL任务量增多,任务复杂度和波动性也随之提升,现有的ETL任务调度机制难以满足调度需求,如时间片轮转法受限于弹性调度能力弱、效率低下等缺点。为研究如何提升ETL任... 随着抽取-转换-加载(extraction-transformation-loading,ETL)系统的ETL任务量增多,任务复杂度和波动性也随之提升,现有的ETL任务调度机制难以满足调度需求,如时间片轮转法受限于弹性调度能力弱、效率低下等缺点。为研究如何提升ETL任务调度机制的弹性调度能力以及执行效率,提出了一种基于整合移动平均自回归(autoregressive integrated moving average,ARIMA)模型与贪心-遗传-蚁群优化(greedy-genetic-ant colony optimization,GGACO)算法的ETL任务调度机制。初期,建立ARIMA模型并弹性地结合贪心算法计算初始解;中期,利用遗传算法的全局快收敛的特性结合初始解圈定最优解的大致范围;最后,利用蚁群优化算法的局部快速收敛性进行最优解搜索。实验结果表明:该调度机制能够弹性地指导任务调度尽可能地找到最优解,减少任务的执行时间,以及尽可能实现更高效的负载均衡。 展开更多
关键词 弹性调度 ARIMA 贪心算法 遗传算法 蚁群优化算法
在线阅读 下载PDF
考虑飞机除冰任务的除冰车路径规划模型研究
14
作者 徐一旻 王台玉冰 +2 位作者 吕伟 刘鸣秋 吴佳莉 《中国安全生产科学技术》 北大核心 2025年第8期181-188,共8页
为应对冻雨天气下机场除冰作业中车辆调度效率低、动态避障能力不足及多约束条件耦合优化困难等问题,提出1种基于混合蚁群算法的机场除冰车辆路径规划与动态调度优化模型。首先通过栅格化建模技术,将机场CAD地图转化为离散网格空间,综... 为应对冻雨天气下机场除冰作业中车辆调度效率低、动态避障能力不足及多约束条件耦合优化困难等问题,提出1种基于混合蚁群算法的机场除冰车辆路径规划与动态调度优化模型。首先通过栅格化建模技术,将机场CAD地图转化为离散网格空间,综合考虑障碍物动态分布、航班起飞优先级、除冰液有效时间窗、车辆容量限制等约束,构建多目标优化函数。其次,基于混合蚁群算法的全局寻优能力与A^(*)算法的局部路径优化特性,实现复杂环境下路径规划与避障的协同控制。实验基于真实机场脱敏地图构建仿真场景,划分20个区域并标注所有停机位坐标,验证了模型的有效性和鲁棒性。研究结果表明:该模型在确保航班时刻表约束的前提下,总行驶距离减少68%,航班延误时间减少90%,有效规避障碍物膨胀区边界的同时能动态调整多车辆协作路径。研究结果可为冻雨天气下机场除冰作业提供兼顾全局最优性与动态适应性的解决方案。 展开更多
关键词 路径规划 机场除冰车辆 动态调度 混合蚁群算法 多目标优化
在线阅读 下载PDF
考虑双资源约束多转速的绿色柔性作业车间调度研究
15
作者 王玉芳 章殿清 +2 位作者 华晓麟 张毅 葛师语 《控制理论与应用》 北大核心 2025年第10期2019-2027,共9页
考虑实际生产车间机器不同转速产生能耗差异及精工序的生产需求,构建以最大完工时间和机器总能耗为优化目标的双资源约束多转速绿色柔性作业车间调度模型,并提出一种动态学习人工蜂群算法进行求解.采用混合初始化获取初始种群,提升算法... 考虑实际生产车间机器不同转速产生能耗差异及精工序的生产需求,构建以最大完工时间和机器总能耗为优化目标的双资源约束多转速绿色柔性作业车间调度模型,并提出一种动态学习人工蜂群算法进行求解.采用混合初始化获取初始种群,提升算法的进化起点.在雇佣蜂完成搜索之后,引入新蜂种学习蜂,学习优秀蜜源的基因,降低搜索的随机性,提高搜索精度,并采用Q学习算子对学习概率进行自适应优化,保证蜜源多样性的同时加强算法的全局搜索能力.跟随蜂阶段设计一种动态邻域搜索策略,加入基于变速及平衡工人工作时长的邻域结构,提高跟随蜂的局部搜索能力.通过不同算法对拓展算例的对比验证所提算法的优越性. 展开更多
关键词 双资源约束 多转速 绿色柔性车间调度 多目标优化 人工蜂群算法 Q学习
在线阅读 下载PDF
车载无人机物资配送路径优化
16
作者 黄迎春 李开源 《火力与指挥控制》 北大核心 2025年第8期31-37,共7页
采用无人机配送物资在商业和军事上均有广阔的应用前景。针对配送过程中末端配送效率低等问题,提出一种车辆携带多架无人机的配送方案,以最小服务时间为优化目标构造最优化模型,求解模型时采用改进的K-means聚类算法对配送点进行分类,... 采用无人机配送物资在商业和军事上均有广阔的应用前景。针对配送过程中末端配送效率低等问题,提出一种车辆携带多架无人机的配送方案,以最小服务时间为优化目标构造最优化模型,求解模型时采用改进的K-means聚类算法对配送点进行分类,将聚类中心作为货车配送点;然后以车辆路径问题为基础设计蚁群拟算法求解一车携带多架无人机形式的配送路线。通过采用标准数据集进行实验,实验结果表明改进后算法在路径优化能力和求解精确性方面都有较好的性能。 展开更多
关键词 综合运输 聚类算法 蚁群算法 路径优化
在线阅读 下载PDF
基于改进蚁群算法与冰霜-势场法的AGV路径规划
17
作者 李学艺 莫凡 +2 位作者 葛淑磊 吴宗坤 杨通 《组合机床与自动化加工技术》 北大核心 2025年第7期66-72,共7页
针对生产车间中自动导引车(automated guided vehicle,AGV)在路径规划时难以兼顾全局最优与局部最优的问题,提出了一种基于改进蚁群算法和冰霜-势场法的路径规划方法。改进后的蚁群算法可以高效地规划AGV运行的全局路径;提出的冰霜-势... 针对生产车间中自动导引车(automated guided vehicle,AGV)在路径规划时难以兼顾全局最优与局部最优的问题,提出了一种基于改进蚁群算法和冰霜-势场法的路径规划方法。改进后的蚁群算法可以高效地规划AGV运行的全局路径;提出的冰霜-势场法可以使AGV在避让障碍物的同时缩短局部路径的长度。仿真实验证明,相较于传统蚁群算法及其变体,改进的蚁群算法规划的路径长度短5.71%且收敛速度更快;以轴加工车间为例通过仿真表明,相较于D*算法与传统人工势场法,所提出的路径规划方法兼顾路径的全局最优与局部最优,且路径长度缩短6.3%以上。 展开更多
关键词 路径规划 AGV 蚁群算法 冰霜优化
在线阅读 下载PDF
基于近端策略优化的数据中心任务调度算法
18
作者 徐涛 常怡明 刘才华 《计算机工程与设计》 北大核心 2025年第3期712-718,共7页
针对调度算法无法动态适应数据中心状态动态变化和用户需求多样化的问题,提出一种基于近端策略优化的数据中心两阶段任务调度算法。通过设计优先级函数为任务提供优先级,采用近端策略优化方法适应数据中心状态动态变化和用户需求的多样... 针对调度算法无法动态适应数据中心状态动态变化和用户需求多样化的问题,提出一种基于近端策略优化的数据中心两阶段任务调度算法。通过设计优先级函数为任务提供优先级,采用近端策略优化方法适应数据中心状态动态变化和用户需求的多样化。在任务选择阶段通过计算任务的优先级,优先调度高优先级任务;在物理服务器选择阶段,智能体根据实时的数据中心状态和用户需求,灵活地调整任务调度决策,实现资源的高效分配。实验结果表明,该算法性能优于现有的启发式算法以及常用强化学习算法。 展开更多
关键词 调度算法 数据中心 任务调度 强化学习 近端策略优化 优先级 两阶段
在线阅读 下载PDF
有向无环图建模的自动导引车任务调度优化
19
作者 胡毅 崔梦笙 +1 位作者 张曦阳 赵彦庆 《浙江大学学报(工学版)》 北大核心 2025年第8期1680-1688,共9页
针对生产线和仓库之间单载自动导引车(AGV)任务调度的行驶距离优化问题,考虑多种任务选择策略,提出基于二进制粒子群优化的嵌套算法框架(BPSO嵌套框架),求解优化调度方案.针对固定任务选择策略下的优化调度方案求解,考虑任务执行顺序约... 针对生产线和仓库之间单载自动导引车(AGV)任务调度的行驶距离优化问题,考虑多种任务选择策略,提出基于二进制粒子群优化的嵌套算法框架(BPSO嵌套框架),求解优化调度方案.针对固定任务选择策略下的优化调度方案求解,考虑任务执行顺序约束和任务节点信息随环境变化,以最小化AGV行驶总距离为目标,建立基于有向无环图建模的动态旅行商问题(DAGDTSP)模型,提出改进遗传算法(IGA)求解模型.实验结果表明,针对AGV任务调度方案的优化,利用IGA算法,能够有效地求解固定任务选择策略下的优化调度方案. BPSO嵌套框架能够提升求解质量,所求解的优化调度方案能够在一定程度上适应任务变化. DAGDTSP模型在不同环境参数设置的测试问题上具备准确性. 展开更多
关键词 任务调度 行驶总距离 有向无环图 遗传算法 粒子群优化算法
在线阅读 下载PDF
地下装配式建筑施工工期-成本-碳排放的均衡优化
20
作者 闫林君 王亚妮 +1 位作者 陈慧鑫 刘晶晶 《兰州大学学报(自然科学版)》 北大核心 2025年第3期357-363,共7页
为了地下装配式建筑施工关键要素的协调优化控制,以多属性效用函数为主,施工工期为决策变量,建立基于施工工期-成本-碳排放的均衡优化模型.通过分析施工工期-成本-碳排放要素之间的关系,将其以函数形式量化,构建地下装配式施工关键要素... 为了地下装配式建筑施工关键要素的协调优化控制,以多属性效用函数为主,施工工期为决策变量,建立基于施工工期-成本-碳排放的均衡优化模型.通过分析施工工期-成本-碳排放要素之间的关系,将其以函数形式量化,构建地下装配式施工关键要素的均衡优化目标函数.基于地下装配式施工对关键要素的作用机理,利用网络层次分析法确定均衡优化函数的决策偏好系数,用多种群蚁群协同进化算法得到均衡优化模型的最优解,并在整体模型的最优解下得到各关键要素的较优解.以实例构建施工任务均衡优化函数并进行优化分析.结果表明,当最优效用值μ=0.86时,预制构件关键要素达到均衡最优;当μ=0.87时,现场装配与吊装关键要素达到均衡最优;当μ=0.90时,后浇混凝土关键要素达到均衡最优;当μ=0.86时,养护关键要素达到均衡最优.结论验证了构建的均衡优化函数的合理性以及算法对求解模型的有效性. 展开更多
关键词 地下装配式建筑 关键要素 均衡优化 多属性效用函数 多种群蚁群协同进化算法
在线阅读 下载PDF
上一页 1 2 88 下一页 到第
使用帮助 返回顶部