The weapon and equipment operational requirement analysis(WEORA) is a necessary condition to win a future war,among which the acquisition of knowledge about weapons and equipment is a great challenge. The main challen...The weapon and equipment operational requirement analysis(WEORA) is a necessary condition to win a future war,among which the acquisition of knowledge about weapons and equipment is a great challenge. The main challenge is that the existing weapons and equipment data fails to carry out structured knowledge representation, and knowledge navigation based on natural language cannot efficiently support the WEORA. To solve above problem, this research proposes a method based on question answering(QA) of weapons and equipment knowledge graph(WEKG) to construct and navigate the knowledge related to weapons and equipment in the WEORA. This method firstly constructs the WEKG, and builds a neutral network-based QA system over the WEKG by means of semantic parsing for knowledge navigation. Finally, the method is evaluated and a chatbot on the QA system is developed for the WEORA. Our proposed method has good performance in the accuracy and efficiency of searching target knowledge, and can well assist the WEORA.展开更多
目前针对复杂语义和复杂句法的知识库问答(Knowledge Base Question Answering,KBQA)研究层出不穷,但它们多以已知问题的主题实体为前提,对问题中多意图和多实体重视不足,而问句中对核心实体的识别是理解自然语言的关键。针对此问题,提...目前针对复杂语义和复杂句法的知识库问答(Knowledge Base Question Answering,KBQA)研究层出不穷,但它们多以已知问题的主题实体为前提,对问题中多意图和多实体重视不足,而问句中对核心实体的识别是理解自然语言的关键。针对此问题,提出了一种引入核心实体关注度的KBQA模型。该模型基于注意力机制及注意力增强技术,对识别到的实体引用(Mention)进行重要性评估,得到实体引用关注度,去除潜在干扰项,捕获用户提问的核心实体,解决了多实体、多意图问句的语义理解问题。此外,还将评估的结果作为重要权重引入后续的问答推理中。在英文MetaQA数据集、多实体问句MetaQA数据集、多实体问句HotpotQA数据集上,与KVMem,GraftNet,PullNet等模型进行了对比实验。结果表明,针对多实体问句,所提模型在Hits@n、准确率、召回率等评估指标上均取得了更好的实验效果。展开更多
With the warming up and continuous development of machine learning,especially deep learning,the research on visual question answering field has made significant progress,with important theoretical research significanc...With the warming up and continuous development of machine learning,especially deep learning,the research on visual question answering field has made significant progress,with important theoretical research significance and practical application value.Therefore,it is necessary to summarize the current research and provide some reference for researchers in this field.This article conducted a detailed and in-depth analysis and summarized of relevant research and typical methods of visual question answering field.First,relevant background knowledge about VQA(Visual Question Answering)was introduced.Secondly,the issues and challenges of visual question answering were discussed,and at the same time,some promising discussion on the particular methodologies was given.Thirdly,the key sub-problems affecting visual question answering were summarized and analyzed.Then,the current commonly used data sets and evaluation indicators were summarized.Next,in view of the popular algorithms and models in VQA research,comparison of the algorithms and models was summarized and listed.Finally,the future development trend and conclusion of visual question answering were prospected.展开更多
The information integration method of semantic web based on agent ontology(SWAO method) was put forward aiming at the problems in current network environment,which integrates,analyzes and processes enormous web inform...The information integration method of semantic web based on agent ontology(SWAO method) was put forward aiming at the problems in current network environment,which integrates,analyzes and processes enormous web information and extracts answers on the basis of semantics. With SWAO method as the clue,the following technologies were studied:the method of concept extraction based on semantic term mining,agent ontology construction method on account of multi-points and the answer extraction in view of semantic inference. Meanwhile,the structural model of the question answering system applying ontology was presented,which adopts OWL language to describe domain knowledge from where QA system infers and extracts answers by Jena inference engine. In the system testing,the precision rate reaches 86%,and the recalling rate is 93%. The experimental results prove that it is feasible to use the method to develop a question answering system,which is valuable for further study in more depth.展开更多
文摘The weapon and equipment operational requirement analysis(WEORA) is a necessary condition to win a future war,among which the acquisition of knowledge about weapons and equipment is a great challenge. The main challenge is that the existing weapons and equipment data fails to carry out structured knowledge representation, and knowledge navigation based on natural language cannot efficiently support the WEORA. To solve above problem, this research proposes a method based on question answering(QA) of weapons and equipment knowledge graph(WEKG) to construct and navigate the knowledge related to weapons and equipment in the WEORA. This method firstly constructs the WEKG, and builds a neutral network-based QA system over the WEKG by means of semantic parsing for knowledge navigation. Finally, the method is evaluated and a chatbot on the QA system is developed for the WEORA. Our proposed method has good performance in the accuracy and efficiency of searching target knowledge, and can well assist the WEORA.
文摘目前针对复杂语义和复杂句法的知识库问答(Knowledge Base Question Answering,KBQA)研究层出不穷,但它们多以已知问题的主题实体为前提,对问题中多意图和多实体重视不足,而问句中对核心实体的识别是理解自然语言的关键。针对此问题,提出了一种引入核心实体关注度的KBQA模型。该模型基于注意力机制及注意力增强技术,对识别到的实体引用(Mention)进行重要性评估,得到实体引用关注度,去除潜在干扰项,捕获用户提问的核心实体,解决了多实体、多意图问句的语义理解问题。此外,还将评估的结果作为重要权重引入后续的问答推理中。在英文MetaQA数据集、多实体问句MetaQA数据集、多实体问句HotpotQA数据集上,与KVMem,GraftNet,PullNet等模型进行了对比实验。结果表明,针对多实体问句,所提模型在Hits@n、准确率、召回率等评估指标上均取得了更好的实验效果。
基金Project(61702063)supported by the National Natural Science Foundation of China。
文摘With the warming up and continuous development of machine learning,especially deep learning,the research on visual question answering field has made significant progress,with important theoretical research significance and practical application value.Therefore,it is necessary to summarize the current research and provide some reference for researchers in this field.This article conducted a detailed and in-depth analysis and summarized of relevant research and typical methods of visual question answering field.First,relevant background knowledge about VQA(Visual Question Answering)was introduced.Secondly,the issues and challenges of visual question answering were discussed,and at the same time,some promising discussion on the particular methodologies was given.Thirdly,the key sub-problems affecting visual question answering were summarized and analyzed.Then,the current commonly used data sets and evaluation indicators were summarized.Next,in view of the popular algorithms and models in VQA research,comparison of the algorithms and models was summarized and listed.Finally,the future development trend and conclusion of visual question answering were prospected.
基金Projects(60773462, 60672171) supported by the National Natural Science Foundation of ChinaProjects(2009AA12143, 2009AA012136) supported by the National High-Tech Research and Development Program of ChinaProject(20080430250) supported by the Foundation of Post-Doctor in China
文摘The information integration method of semantic web based on agent ontology(SWAO method) was put forward aiming at the problems in current network environment,which integrates,analyzes and processes enormous web information and extracts answers on the basis of semantics. With SWAO method as the clue,the following technologies were studied:the method of concept extraction based on semantic term mining,agent ontology construction method on account of multi-points and the answer extraction in view of semantic inference. Meanwhile,the structural model of the question answering system applying ontology was presented,which adopts OWL language to describe domain knowledge from where QA system infers and extracts answers by Jena inference engine. In the system testing,the precision rate reaches 86%,and the recalling rate is 93%. The experimental results prove that it is feasible to use the method to develop a question answering system,which is valuable for further study in more depth.