Aqueous zinc metal batteries(AZMBs)have garnered widespread attention due to their low cost and high safety.However,current researches are still primarily focused on reversible cycling at low areal capacity,which is f...Aqueous zinc metal batteries(AZMBs)have garnered widespread attention due to their low cost and high safety.However,current researches are still primarily focused on reversible cycling at low areal capacity,which is far from practical application.Addressing interfacial stability issues encountered during cycling and employing interfacial optimization strategies can promote the development of safe and eco-friendly AZMBs.By introducingγ-valerolactone(GVL),which disrupts the original hydrogen bonding network of water,the electrochemical window of electrolyte is expanded,and the reactivity of water is significantly reduced.Additionally,the incorporation of GVL in Zn ion solvation alters the deposition pattern on the Zn anode surface,resulting in improved cyclic performance.The cells demonstrated excellent performance,maintaining stable over 400 h at 5 mA/cm^(2)-5 mA·h/cm^(2),and nearly 300 h in Zn||Zn symmetric cell at 80%depth of discharge(DOD).The full cells matched with NH_(4)V_(4)O_(10) could cycle over 200 cycles under the condition of high areal capacity(7 mA·h/cm^(2)),an N/P ratio of 1.99 and an E/C ratio of 9.3μL/(mA·h).展开更多
基金Project(2023YFC2908305)supported by the National Key R&D Program of ChinaProjects(52072411,52301273)supported by the National Natural Science Foundation of China+1 种基金Project(2023CXQD038)supported by the Central South University Innovation-Driven Research Program,ChinaProject(S202310533413)supported by the Fundamental Research Funds for the Central Universities of Central South University,China。
文摘Aqueous zinc metal batteries(AZMBs)have garnered widespread attention due to their low cost and high safety.However,current researches are still primarily focused on reversible cycling at low areal capacity,which is far from practical application.Addressing interfacial stability issues encountered during cycling and employing interfacial optimization strategies can promote the development of safe and eco-friendly AZMBs.By introducingγ-valerolactone(GVL),which disrupts the original hydrogen bonding network of water,the electrochemical window of electrolyte is expanded,and the reactivity of water is significantly reduced.Additionally,the incorporation of GVL in Zn ion solvation alters the deposition pattern on the Zn anode surface,resulting in improved cyclic performance.The cells demonstrated excellent performance,maintaining stable over 400 h at 5 mA/cm^(2)-5 mA·h/cm^(2),and nearly 300 h in Zn||Zn symmetric cell at 80%depth of discharge(DOD).The full cells matched with NH_(4)V_(4)O_(10) could cycle over 200 cycles under the condition of high areal capacity(7 mA·h/cm^(2)),an N/P ratio of 1.99 and an E/C ratio of 9.3μL/(mA·h).