Anatase TiO_(2)nanospindles containing 89%exposed{101}facets(TIO_(2)-101)and nanosheets with 77%exposed{001}facets(TiO_(2)-001)were hydrothermally synthesized and used as supports for Pd catalysts.The effects of the T...Anatase TiO_(2)nanospindles containing 89%exposed{101}facets(TIO_(2)-101)and nanosheets with 77%exposed{001}facets(TiO_(2)-001)were hydrothermally synthesized and used as supports for Pd catalysts.The effects of the TiO_(2)materials on the catalytic performance of Pd/TiO_(2)-101 and Pd/TiO_(2)-001 catalysts were investigated in the selective hydrogenation of acetylene to polymer-grade ethylene.The PdfTiO_(2)-101 catalyst exhibited enhanced performance in terms of acetylene conversion and ethylene yield.To understand these effects,the catalysts were characterized by H_(2)temperature-programmed desorption(H_(2)-TPD),H_(2)temperature-programmed reduction(H=-TPR),transmission electron microscopy(TEM),pulse CO chemisorption,X-ray photoelectron spectroscopy(XPS),and thermogravimetric analysis(TGA).The TEM and CO chemisorption results confirmed that Pd nanoparticles(NPs)on the TiO_(2)-101 support had a smaller average particle size(1.53 nm)and a higher dispersion(15.95%)than those on the TiO_(2)-001 support(average particle size of 4.36 nm and dispersion of 9.06%).The smaller particle size and higher dispersion of Pd on the Pd/TiO_(2)-101 catalyst provided more reaction active sites,which contributed to the improved catalytic activity of this supported catalyst.展开更多
For the purpose of increasing the dispersion of anatase titanium dioxide(A-TiO2)in organic matrix, the surface organic modification of A-TiO2 with the modifier of sodium stearate and sodium oleate, respectively, was s...For the purpose of increasing the dispersion of anatase titanium dioxide(A-TiO2)in organic matrix, the surface organic modification of A-TiO2 with the modifier of sodium stearate and sodium oleate, respectively, was studied. The process condition of modification was optimized, the performance of modified A-TiO2 was characterized and the mechanism between modifier and A-TiO2 was analyzed. The main contents and results are as展开更多
The TiO2/vermiculite composites were prepared by in-situ hydrolyzing reaction and in-situ dehydrating reaction of tetrabutyl titanate-hexadecyl trimethyl ammonium bromide intercalated vermiculite. The structural phase...The TiO2/vermiculite composites were prepared by in-situ hydrolyzing reaction and in-situ dehydrating reaction of tetrabutyl titanate-hexadecyl trimethyl ammonium bromide intercalated vermiculite. The structural phase transition of TiO2 in TiO2/vermiculite composites calcined at different temperatures was characterized by using XRD and Raman. The results show that at calcination temperature of 800℃ appeared the anatase phase of TiO2 in TiO2/vermiculite nanocomposites, while pure TiO2 is all converted to rutile at the same temperature. The average crystal size of TiO2 in TiO2/vermiculite nanocomposites and pure TiO2 both increase with the calcination temperature. The average grain size of TiO2 in TiO2/vermiculite nanocomposites is less than that of pure TiO2 at the same calcination temperature. The results also show that the silicon-oxygen structure in layered vermiculite structure can effectively depress the phase transformation from anatase to rutile, thus enhancing the transition temperature and inhibitting the growth of anatase crystals.展开更多
The hydrated-titanium-oxide/montmorillonite composite samples were prepared using a hydrolysation- intercalation composite method by controlling the amount of TiOSO4·2H2O. The TiO2/montmorillonite composite sampl...The hydrated-titanium-oxide/montmorillonite composite samples were prepared using a hydrolysation- intercalation composite method by controlling the amount of TiOSO4·2H2O. The TiO2/montmorillonite composite samples were got after calculated at 700℃ and 1100 ℃. The results show that: when the value of Ti/montmorillonite is 12.5 mmol/g, the c axis of hydrated-titanium-oxide/ montmorillonite composite sample began to disorder, moreover, the crystal size of anatase is just 13.4nm in the TiO2/montmorillonite composite sample calculated at 700 ℃, and after calculated at 1100 ℃, the crystal size of anatase is 55.8 nm, and the relative content of anatase reaches the highest (55.7%). Compared with pure TiO2 nano-particle sample, TiO2/montmorillonite composite sample has a higher phase transition temperature from anatase phase to rutile phase and smaller crystal size of TiO2. Montmorillonite structure layer has a significant blocking effect on TiO2 phase transformation and grain growth, and the blocking effect reaches saturation when the value of Ti/montmorillonite is 12.5 mmol/g.展开更多
文摘Anatase TiO_(2)nanospindles containing 89%exposed{101}facets(TIO_(2)-101)and nanosheets with 77%exposed{001}facets(TiO_(2)-001)were hydrothermally synthesized and used as supports for Pd catalysts.The effects of the TiO_(2)materials on the catalytic performance of Pd/TiO_(2)-101 and Pd/TiO_(2)-001 catalysts were investigated in the selective hydrogenation of acetylene to polymer-grade ethylene.The PdfTiO_(2)-101 catalyst exhibited enhanced performance in terms of acetylene conversion and ethylene yield.To understand these effects,the catalysts were characterized by H_(2)temperature-programmed desorption(H_(2)-TPD),H_(2)temperature-programmed reduction(H=-TPR),transmission electron microscopy(TEM),pulse CO chemisorption,X-ray photoelectron spectroscopy(XPS),and thermogravimetric analysis(TGA).The TEM and CO chemisorption results confirmed that Pd nanoparticles(NPs)on the TiO_(2)-101 support had a smaller average particle size(1.53 nm)and a higher dispersion(15.95%)than those on the TiO_(2)-001 support(average particle size of 4.36 nm and dispersion of 9.06%).The smaller particle size and higher dispersion of Pd on the Pd/TiO_(2)-101 catalyst provided more reaction active sites,which contributed to the improved catalytic activity of this supported catalyst.
文摘For the purpose of increasing the dispersion of anatase titanium dioxide(A-TiO2)in organic matrix, the surface organic modification of A-TiO2 with the modifier of sodium stearate and sodium oleate, respectively, was studied. The process condition of modification was optimized, the performance of modified A-TiO2 was characterized and the mechanism between modifier and A-TiO2 was analyzed. The main contents and results are as
文摘The TiO2/vermiculite composites were prepared by in-situ hydrolyzing reaction and in-situ dehydrating reaction of tetrabutyl titanate-hexadecyl trimethyl ammonium bromide intercalated vermiculite. The structural phase transition of TiO2 in TiO2/vermiculite composites calcined at different temperatures was characterized by using XRD and Raman. The results show that at calcination temperature of 800℃ appeared the anatase phase of TiO2 in TiO2/vermiculite nanocomposites, while pure TiO2 is all converted to rutile at the same temperature. The average crystal size of TiO2 in TiO2/vermiculite nanocomposites and pure TiO2 both increase with the calcination temperature. The average grain size of TiO2 in TiO2/vermiculite nanocomposites is less than that of pure TiO2 at the same calcination temperature. The results also show that the silicon-oxygen structure in layered vermiculite structure can effectively depress the phase transformation from anatase to rutile, thus enhancing the transition temperature and inhibitting the growth of anatase crystals.
文摘The hydrated-titanium-oxide/montmorillonite composite samples were prepared using a hydrolysation- intercalation composite method by controlling the amount of TiOSO4·2H2O. The TiO2/montmorillonite composite samples were got after calculated at 700℃ and 1100 ℃. The results show that: when the value of Ti/montmorillonite is 12.5 mmol/g, the c axis of hydrated-titanium-oxide/ montmorillonite composite sample began to disorder, moreover, the crystal size of anatase is just 13.4nm in the TiO2/montmorillonite composite sample calculated at 700 ℃, and after calculated at 1100 ℃, the crystal size of anatase is 55.8 nm, and the relative content of anatase reaches the highest (55.7%). Compared with pure TiO2 nano-particle sample, TiO2/montmorillonite composite sample has a higher phase transition temperature from anatase phase to rutile phase and smaller crystal size of TiO2. Montmorillonite structure layer has a significant blocking effect on TiO2 phase transformation and grain growth, and the blocking effect reaches saturation when the value of Ti/montmorillonite is 12.5 mmol/g.