Alunite is the most important non bauxite resource for alumina. Various methods have been proposed and patented for processing alunite, but none has been performed at industrial scale and no technical,operational and ...Alunite is the most important non bauxite resource for alumina. Various methods have been proposed and patented for processing alunite, but none has been performed at industrial scale and no technical,operational and economic data is available to evaluate methods. In addition, selecting the right approach for alunite beneficiation, requires introducing a wide range of criteria and careful analysis of alternatives.In this research, after studying the existing processes, 13 methods were considered and evaluated by 14 technical, economic and environmental analyzing criteria. Due to multiplicity of processing methods and attributes, in this paper, Multi Attribute Decision Making methods were employed to examine the appropriateness of choices. The Delphi Analytical Hierarchy Process(DAHP) was used for weighting selection criteria and Fuzzy TOPSIS approach was used to determine the most profitable candidates. Among 13 studied methods, Spanish, Svoronos and Hazan methods were respectively recognized to be the best choices.展开更多
A new prioritization method in the analytic hierarchy process (AHP), which improves the group fuzzy preference programming (GFPP) method, is proposed. The fuzzy random theory is applied in the new prioritization m...A new prioritization method in the analytic hierarchy process (AHP), which improves the group fuzzy preference programming (GFPP) method, is proposed. The fuzzy random theory is applied in the new prioritization method. By modifying the principle of decision making implied in the GFPP method, the improved group fuzzy preference programming (IGFPP) method is formulated as a fuzzy linear programming problem to maximize the average degree of the group satisfaction with all possible group priority vectors. The IGFPP method inherits the advantages of the GFPP method, and solves the weighting trouble existed in the GFPP method. Numerical tests indicate that the IGFPP method performs more effectively than the GFPP method in the case of very contradictive comparison judgments from decision makers.展开更多
文摘Alunite is the most important non bauxite resource for alumina. Various methods have been proposed and patented for processing alunite, but none has been performed at industrial scale and no technical,operational and economic data is available to evaluate methods. In addition, selecting the right approach for alunite beneficiation, requires introducing a wide range of criteria and careful analysis of alternatives.In this research, after studying the existing processes, 13 methods were considered and evaluated by 14 technical, economic and environmental analyzing criteria. Due to multiplicity of processing methods and attributes, in this paper, Multi Attribute Decision Making methods were employed to examine the appropriateness of choices. The Delphi Analytical Hierarchy Process(DAHP) was used for weighting selection criteria and Fuzzy TOPSIS approach was used to determine the most profitable candidates. Among 13 studied methods, Spanish, Svoronos and Hazan methods were respectively recognized to be the best choices.
基金Sponsored by the National Natural Science Foundation of China (70471063)
文摘A new prioritization method in the analytic hierarchy process (AHP), which improves the group fuzzy preference programming (GFPP) method, is proposed. The fuzzy random theory is applied in the new prioritization method. By modifying the principle of decision making implied in the GFPP method, the improved group fuzzy preference programming (IGFPP) method is formulated as a fuzzy linear programming problem to maximize the average degree of the group satisfaction with all possible group priority vectors. The IGFPP method inherits the advantages of the GFPP method, and solves the weighting trouble existed in the GFPP method. Numerical tests indicate that the IGFPP method performs more effectively than the GFPP method in the case of very contradictive comparison judgments from decision makers.