To improve the hit probability of tank at high speed,a prediction method of projectile-target intersection based on adaptive robust constraint-following control and interval uncertainty analysis is proposed.The method...To improve the hit probability of tank at high speed,a prediction method of projectile-target intersection based on adaptive robust constraint-following control and interval uncertainty analysis is proposed.The method proposed provides a novel way to predict the impact point of projectile for moving tank.First,bidirectional stability constraints and stability constraint-following error are constructed using the Udwadia-Kalaba theory,and an adaptive robust constraint-following controller is designed considering uncertainties.Second,the exterior ballistic ordinary differential equation with uncertainties is integrated into the controller,and the pointing control of stability system is extended to the impact-point control of projectile.Third,based on the interval uncertainty analysis method combining Chebyshev polynomial expansion and affine arithmetic,a prediction method of projectile-target intersection is proposed.Finally,the co-simulation experiment is performed by establishing the multi-body system dynamic model of tank and mathematical model of control system.The results demonstrate that the prediction method of projectile-target intersection based on uncertainty analysis can effectively decrease the uncertainties of system,improve the prediction accuracy,and increase the hit probability.The adaptive robust constraint-following control can effectively restrain the uncertainties caused by road excitation and model error.展开更多
The adaptive FEM analysis of the temperature field of the piston in one diesel engine is given by using the ANSYS software. By making full use of the post results provided by the software, the posteriori error estimat...The adaptive FEM analysis of the temperature field of the piston in one diesel engine is given by using the ANSYS software. By making full use of the post results provided by the software, the posteriori error estimation and adaptive accuracy meshing algorithm is developed. So the blindness of the mesh design through experiences can be avoided, and the accuracy requirement is adapted to the relative temperature gradient distribution across the entire domain. Therefore the meshes and solutions can be obtained at the same time. Based on the temperature field analysis, the thermal stress and deformation fields are calculated as well. The results show that the stress concentrates on the edge of the piston pin boss and the inside surface of the first ring groove, and the deformation of the head of the piston is greatest. But the difference between the long and short axes of the bottom cross section is greatest.展开更多
Climate Change Vulnerability Assessment(VA) tools for forest ecosystems and forest-dependent communities are important for making decisions and understanding the impact of climate change on both social and natural s...Climate Change Vulnerability Assessment(VA) tools for forest ecosystems and forest-dependent communities are important for making decisions and understanding the impact of climate change on both social and natural systems.However,the tools are poorly coordinated,making it difficult for policymakers to carry out VAs properly.The aim of this study was to analyze VA literature worldwide to find representative case studies in terms of methods and tools applied and which have been successful in performing VAs on forests and forest-dependent communities.All successful VA studies analyzed had common characteristics such as significant funding,data availability and technical capacity.An additional characteristic was the development of an integrated approach that considered the vulnerability of both ecosystems and communities by combining qualitative and quantitative methods.Community members and relevant stakeholders were significantly involved in a participatory process that concluded with the identification of adaptation measures.The case studies also revealed how policymakers need to choose suitable methods and tools to undertake efficient assessment of vulnerabilities.They need to consider several aspects of the VA process such as subject matter,availability of resources,time and scale.展开更多
Climate has changed sufficiently over the last 150 years and forced out upper treeline advance at the most studied sites around the world.The rate of advance has been extremely variable–from tens to hundreds meters i...Climate has changed sufficiently over the last 150 years and forced out upper treeline advance at the most studied sites around the world.The rate of advance has been extremely variable–from tens to hundreds meters in altitude.This is because the degree at which tree frontal populations respond to climate change depends on the complex interaction of biological and physical factors.The resulting stand pattern is the consequence of the interaction between dispersal and survival functions.A few publications have addressed the question of how this pattern is generated.In order to understand how the spatial structure of tree stands was formed at the upper limit of their distribution in the Ural Mountains,we assessed the distance and direction of dispersal of offspring from maternal individuals.We found that in frontal Larix sibirica Ledeb.populations,‘effective’dispersal of offspring ranges from 3 to 758 m(with a median of 20–33 m in open forest and 219 m in single-tree tundra in the Polar Urals and 107 m in open forest in the Northern Urals).We revealed that most of the offspring effectively dispersed not only in the direction of the prevailing winds,but also in the opposite direction up the slope,and the distance can reach 500–760 m.The data obtained can be used to develop an individual-based model which is capable of simulating in detail the dynamics of tree stands at the upper limit of their growth and reliably predicting the future position and pattern of treeline ecotone as growth conditions continue to improve in the face of observed climate change.展开更多
Objective: To introduce a method to calculate cardiovascular age, a new, accurate and much simpler index for assessing cardiovascular autonomic regulatory function, based on statistical analysis of heart rate and bloo...Objective: To introduce a method to calculate cardiovascular age, a new, accurate and much simpler index for assessing cardiovascular autonomic regulatory function, based on statistical analysis of heart rate and blood pressure variability (HRV and BPV) and baroreflex sensitivity (BRS) data. Methods: Firstly, HRV and BPV of 89 healthy aviation personnel were analyzed by the conventional autoregressive (AR) spectral analysis and their spontaneous BRS was obtained by the sequence method. Secondly, principal component analysis was conducted over original and derived indices of HRV, BPV and BRS data and the relevant principal components, PCi orig and PCi deri (i=1, 2, 3,...) were obtained. Finally, the equation for calculating cardiovascular age was obtained by multiple regression with the chronological age being assigned as the dependent variable and the principal components significantly related to age as the regressors. Results: The first four principal components of original indices accounted for over 90% of total variance of the indices, so did the first three principal components of derived indices. So, these seven principal components could reflect the information of cardiovascular autonomic regulation which was embodied in the 17 indices of HRV, BPV and BRS exactly with a minimal loss of information. Of the seven principal components, PC2 orig , PC4 orig and PC2 deri were negatively correlated with the chronological age ( P <0 05), whereas the PC3 orig was positively correlated with the chronological age ( P <0 01). The cardiovascular age thus calculated from the regression equation was significantly correlated with the chronological age among the 89 aviation personnel ( r =0.73, P <0 01). Conclusion: The cardiovascular age calculated based on a multi variate analysis of HRV, BPV and BRS could be regarded as a comprehensive indicator reflecting the age dependency of autonomic regulation of cardiovascular system in healthy aviation personnel.展开更多
In this paper, an investigation into the propagation of far field explosion waves in water and their effects on nearby structures are carried out. For the far field structure, the motion of the fluid surrounding the s...In this paper, an investigation into the propagation of far field explosion waves in water and their effects on nearby structures are carried out. For the far field structure, the motion of the fluid surrounding the structure may be assumed small, allowing linearization of the governing fluid equations. A complete analysis of the problem must involve simultaneous solution of the dynamic response of the structure and the propagation of explosion wave in the surrounding fluid. In this study, a dynamic adaptive finite element procedure is proposed. Its application to the solution of a 2D fluid-structure interaction is investigated in the time domain. The research includes:a) calculation of the far-field scatter wave due to underwater explosion including solution of the time-depended acoustic wave equation, b) fluid-structure interaction analysis using coupled Euler-Lagrangian approach, and c) adaptive finite element procedures employing error estimates, and re-meshing. The temporal mesh adaptation is achieved by local regeneration of the grid using a time-dependent error indicator based on curvature of pressure function. As a result, the overall response is better predicted by a moving mesh than an equivalent uniform mesh. In addition, the cost of computation for large problems is reduced while the accuracy is improved.展开更多
OBJECTIVE In patients undergoing cardiac surgery,reduced preoperative ejection fraction(EF)and senior age are associated with a worse outcome.As most outcome data available for these patients are mainly from Western s...OBJECTIVE In patients undergoing cardiac surgery,reduced preoperative ejection fraction(EF)and senior age are associated with a worse outcome.As most outcome data available for these patients are mainly from Western surgical populations involving specific surgery types,our aim is to evaluate the real-world characteristics and perioperative outcomes of surgery in senior-aged heart failure patients with reduced EF across a broad range cardiac surgeries.METHODS Data were obtained from the China Heart Failure Surgery Registry(China-HFSR)database,a nationwide multicenter registry study in China's Mainland.Multiple variable regression analysis was performed in patients over 75 years old to identify risk factors associated with mortality.RESULTS From 2012 to 2017,578 senior-aged(>75 years)patients were enrolled in China HFSR,21.1%of whom were female.Isolated coronary bypass grafting(CABG)were performed in 71.6%of patients,10.1%of patients underwent isolated valve surgery and 8.7%received CABG combined with valve surgery.In-hospital mortality was 10.6%,and the major complication rate was 17.3%.Multivariate analysis identified diabetes mellitus(odds ratio(OR)=1.985),increased creatinine(OR=1.007),New York Heart Association(NYHA)Class III(OR=1.408),NYHA class IV(OR=1.955),cardiogenic shock(OR,6.271),and preoperative intra-aortic balloon pump insertion(OR=3.426)as independent predictors of in-hospital mortality.CONCLUSIONS In senior-aged patients,preoperative evaluation should be carefully performed,and strict management of reversible factors needs more attention.Senior-aged patients commonly have a more severe disease status combined with more frequent comorbidities,which may lead to a high risk in mortality.展开更多
Cyanobacteria are the simplest organisms to have circadian clocks.The central oscillator in cyanobacteria is composed by a transcriptional/translational feedback loop(TTFL)and a post-translational oscillator(PTO).The ...Cyanobacteria are the simplest organisms to have circadian clocks.The central oscillator in cyanobacteria is composed by a transcriptional/translational feedback loop(TTFL)and a post-translational oscillator(PTO).The PTO is a core pacemaker which consists of three proteins KaiA,KaiB and KaiC.KaiA stimulates the phosphorylation of KaiC,while KaiB inhibits the activity of KaiA.The cyanobacterial circadian clock is an interesting topic for researchers and many mathematical models have been constructed.However,the current mathematical models of the cyanobacterial circadian clock have been made only considering the interactions between Kai proteins.CikA,as an input pathway component,plays an essential role in the circadian clock,whose mutation results in abnormal rhythms.The regulation mechanism of CikA remains unclear.In this paper,we develop a detailed mathematical model for the cyanobacterial circadian clock with incorporation CikA-regulation.Based on numerical simulations,we explore the dynamic properties of the circadian clock regulated by CikA.The results show that the regulation of CikA makes the system more sensitive.In detail,CikA strengthens the central role of PTO and improves the adaptability of the circadian clock against the change of environment.With CikA,the system is able to modulate its period more easily to face environmental perturbation.CikA also enhances slightly the fitness of cyanobacteria.The findings of this paper can supplement the biological research and may help us more clearly understand the cyanobacterial circadian clock regulated by other proteins.展开更多
Simultaneous-source acquisition has been recog- nized as an economic and efficient acquisition method, but the direct imaging of the simultaneous-source data produces migration artifacts because of the interference of...Simultaneous-source acquisition has been recog- nized as an economic and efficient acquisition method, but the direct imaging of the simultaneous-source data produces migration artifacts because of the interference of adjacent sources. To overcome this problem, we propose the regularized least-squares reverse time migration method (RLSRTM) using the singular spectrum analysis technique that imposes sparseness constraints on the inverted model. Additionally, the difference spectrum theory of singular values is presented so that RLSRTM can be implemented adaptively to eliminate the migration artifacts. With numerical tests on a fiat layer model and a Marmousi model, we validate the superior imaging quality, efficiency and convergence of RLSRTM compared with LSRTM when dealing with simultaneoussource data, incomplete data and noisy data.展开更多
Aiming at the problem of relative navigation for non-cooperative rendezvous of spacecraft,this paper proposes a new angles-only navigation architecture using non-linear dynamics method. This method does not solve the ...Aiming at the problem of relative navigation for non-cooperative rendezvous of spacecraft,this paper proposes a new angles-only navigation architecture using non-linear dynamics method. This method does not solve the problem of poor observability of angles-only navigation through orbital or attitude maneuvering,but improves the observability of angles-only navigation through capturing the non-linearity of the system in the evolution of relative motion. First,three relative dynamics models and their corresponding line-of-sight(LoS)measurement equations are introduced,including the rectilinear state relative dynamics model,the curvilinear state relative dynamics model,and the relative orbital elements(ROE)state relative dynamics model. Then,an observability analysis theory based on the Gramian matrix is introduced to determine which relative dynamics model could maximize the observability of angles-only navigation. Next,an adaptive extended Kalman filtering scheme is proposed to solve the problem that the angles-only navigation filter using the non-linear dynamics method is sensitive to measurement noises. Finally,the performances of the proposed angles-only navigation architecture are tested by means of numerical simulations,which demonstrates that the angles-only navigation filtering scheme without orbital or attitude maneuvering is completely feasible through improving the modeling of the relative dynamics and LoS measurement equations.展开更多
Images are generally corrupted by impulse noise during acquisition and transmission.Noise deteriorates the quality of images.To remove corruption noise,we propose a hybrid approach to restoring a random noisecorrupted...Images are generally corrupted by impulse noise during acquisition and transmission.Noise deteriorates the quality of images.To remove corruption noise,we propose a hybrid approach to restoring a random noisecorrupted image,including a block matching 3D(BM3D)method,an adaptive non-local mean(ANLM)scheme,and the K-singular value decomposition(K-SVD)algorithm.In the proposed method,we employ the morphological component analysis(MCA)to decompose an image into the texture,structure,and edge parts.Then,the BM3D method,ANLM scheme,and K-SVD algorithm are utilized to eliminate noise in the texture,structure,and edge parts of the image,respectively.Experimental results show that the proposed approach can effectively remove interference random noise in different parts;meanwhile,the deteriorated image is able to be reconstructed well.展开更多
An h-adaptivity analysis scheme based on multiple scale reproducing kernel particle method was proposed, and two node refinement strategies were constructed using searching-neighbor-nodes(SNN) and local-Delaunay-trian...An h-adaptivity analysis scheme based on multiple scale reproducing kernel particle method was proposed, and two node refinement strategies were constructed using searching-neighbor-nodes(SNN) and local-Delaunay-triangulation(LDT) tech-niques, which were suitable and effective for h-adaptivity analysis on 2-D problems with the regular or irregular distribution of the nodes. The results of multiresolution and h-adaptivity analyses on 2-D linear elastostatics and bending plate problems demonstrate that the improper high-gradient indicator will reduce the convergence property of the h-adaptivity analysis, and that the efficiency of the LDT node refinement strategy is better than SNN, and that the presented h-adaptivity analysis scheme is provided with the validity, stability and good convergence property.展开更多
近年来,复合材料层合板结构被广泛地应用于航空航天、军工、建筑工程等领域。但是,由于其几何尺寸的不准确性、材料参数的分散性、载荷环境的波动性等不确定性因素的影响,可能会对复合材料层合板结构的可靠性和安全性,以及系统的输出响...近年来,复合材料层合板结构被广泛地应用于航空航天、军工、建筑工程等领域。但是,由于其几何尺寸的不准确性、材料参数的分散性、载荷环境的波动性等不确定性因素的影响,可能会对复合材料层合板结构的可靠性和安全性,以及系统的输出响应产生重大影响。由于复合材料层合板的层间黏结不良、外部应力集中等因素,当复合材料层合板结构的能量释放速率达到层间断裂韧性时,就会发生分层。因此对复合材料层合板结构的分层可靠性进行分析具有重要的意义。目前,对于复合材料层合板结构的可靠性分析主要是采用一阶可靠性方法(first order reliability method,FORM)、二阶可靠性方法(second order reliability method,SORM)和重要性抽样方法(importance sampling,IS)等传统可靠性分析方法,并将其和蒙特卡罗模拟(Monte Carlo simulation,MCS)对比。但是,当复合材料结构不确定性维度高且复杂时,这些方法不仅计算效率太低,而且不能保证其计算精度。相比于传统的可靠性分析方法,可以利用基于自适应Kriging模型集成策略和主动学习函数结合蒙特卡罗模拟(adaptive Kriging-based Monte Carlo simulation,AK-MCS)的方法,对复合材料层合板结构进行可靠性分析。而直接概率积分方法(direct probability integral method,DPIM)具有更高的计算效率和精度,特别是对于高维度和复杂的可靠性分析问题。所以,本文采用AK-MCS方法和DPIM对模式Ⅰ、模式Ⅱ和混合Ⅰ/Ⅱ模式下的复合材料层合板结构分层的可靠度进行了研究。结果表明:DPIM和AK-MCS与传统可靠性分析方法相比具有更高的计算精度和计算效率,但是DPIM以其高效的计算效率脱颖而出,尽管其精度略低于AK-MCS,但在处理随机变量更多、非线性程度更高的混合Ⅰ/Ⅱ模式下的层合板结构分层的可靠性时展现出明显优势。综合考虑精度与时效性的平衡,DPIM能够准确地评估复合材料结构的可靠度,保障其在航天航空装备等领域的安全运行。展开更多
基金financially supported by the National Natural Science Foundation of China(Grant 52175099)the China Postdoctoral Science Foundation(Grant No.2020M671494)+1 种基金the Jiangsu Planned Projects for Postdoctoral Research Funds(Grant No.2020Z179)the Nanjing University of Science and Technology Independent Research Program(Grant No.30920021105)。
文摘To improve the hit probability of tank at high speed,a prediction method of projectile-target intersection based on adaptive robust constraint-following control and interval uncertainty analysis is proposed.The method proposed provides a novel way to predict the impact point of projectile for moving tank.First,bidirectional stability constraints and stability constraint-following error are constructed using the Udwadia-Kalaba theory,and an adaptive robust constraint-following controller is designed considering uncertainties.Second,the exterior ballistic ordinary differential equation with uncertainties is integrated into the controller,and the pointing control of stability system is extended to the impact-point control of projectile.Third,based on the interval uncertainty analysis method combining Chebyshev polynomial expansion and affine arithmetic,a prediction method of projectile-target intersection is proposed.Finally,the co-simulation experiment is performed by establishing the multi-body system dynamic model of tank and mathematical model of control system.The results demonstrate that the prediction method of projectile-target intersection based on uncertainty analysis can effectively decrease the uncertainties of system,improve the prediction accuracy,and increase the hit probability.The adaptive robust constraint-following control can effectively restrain the uncertainties caused by road excitation and model error.
文摘The adaptive FEM analysis of the temperature field of the piston in one diesel engine is given by using the ANSYS software. By making full use of the post results provided by the software, the posteriori error estimation and adaptive accuracy meshing algorithm is developed. So the blindness of the mesh design through experiences can be avoided, and the accuracy requirement is adapted to the relative temperature gradient distribution across the entire domain. Therefore the meshes and solutions can be obtained at the same time. Based on the temperature field analysis, the thermal stress and deformation fields are calculated as well. The results show that the stress concentrates on the edge of the piston pin boss and the inside surface of the first ring groove, and the deformation of the head of the piston is greatest. But the difference between the long and short axes of the bottom cross section is greatest.
基金the FAO Forestry Department for the opportunity to conduct the research and for their support
文摘Climate Change Vulnerability Assessment(VA) tools for forest ecosystems and forest-dependent communities are important for making decisions and understanding the impact of climate change on both social and natural systems.However,the tools are poorly coordinated,making it difficult for policymakers to carry out VAs properly.The aim of this study was to analyze VA literature worldwide to find representative case studies in terms of methods and tools applied and which have been successful in performing VAs on forests and forest-dependent communities.All successful VA studies analyzed had common characteristics such as significant funding,data availability and technical capacity.An additional characteristic was the development of an integrated approach that considered the vulnerability of both ecosystems and communities by combining qualitative and quantitative methods.Community members and relevant stakeholders were significantly involved in a participatory process that concluded with the identification of adaptation measures.The case studies also revealed how policymakers need to choose suitable methods and tools to undertake efficient assessment of vulnerabilities.They need to consider several aspects of the VA process such as subject matter,availability of resources,time and scale.
基金supported by the Russian Center for Scientific Information under grant RFBR–21–54–12016 for the sampling and treating of collected materialsby the Russian Scientific Foundation under grant RSF-24–14-00206 for data analysis and preparation of the manuscript.
文摘Climate has changed sufficiently over the last 150 years and forced out upper treeline advance at the most studied sites around the world.The rate of advance has been extremely variable–from tens to hundreds meters in altitude.This is because the degree at which tree frontal populations respond to climate change depends on the complex interaction of biological and physical factors.The resulting stand pattern is the consequence of the interaction between dispersal and survival functions.A few publications have addressed the question of how this pattern is generated.In order to understand how the spatial structure of tree stands was formed at the upper limit of their distribution in the Ural Mountains,we assessed the distance and direction of dispersal of offspring from maternal individuals.We found that in frontal Larix sibirica Ledeb.populations,‘effective’dispersal of offspring ranges from 3 to 758 m(with a median of 20–33 m in open forest and 219 m in single-tree tundra in the Polar Urals and 107 m in open forest in the Northern Urals).We revealed that most of the offspring effectively dispersed not only in the direction of the prevailing winds,but also in the opposite direction up the slope,and the distance can reach 500–760 m.The data obtained can be used to develop an individual-based model which is capable of simulating in detail the dynamics of tree stands at the upper limit of their growth and reliably predicting the future position and pattern of treeline ecotone as growth conditions continue to improve in the face of observed climate change.
文摘Objective: To introduce a method to calculate cardiovascular age, a new, accurate and much simpler index for assessing cardiovascular autonomic regulatory function, based on statistical analysis of heart rate and blood pressure variability (HRV and BPV) and baroreflex sensitivity (BRS) data. Methods: Firstly, HRV and BPV of 89 healthy aviation personnel were analyzed by the conventional autoregressive (AR) spectral analysis and their spontaneous BRS was obtained by the sequence method. Secondly, principal component analysis was conducted over original and derived indices of HRV, BPV and BRS data and the relevant principal components, PCi orig and PCi deri (i=1, 2, 3,...) were obtained. Finally, the equation for calculating cardiovascular age was obtained by multiple regression with the chronological age being assigned as the dependent variable and the principal components significantly related to age as the regressors. Results: The first four principal components of original indices accounted for over 90% of total variance of the indices, so did the first three principal components of derived indices. So, these seven principal components could reflect the information of cardiovascular autonomic regulation which was embodied in the 17 indices of HRV, BPV and BRS exactly with a minimal loss of information. Of the seven principal components, PC2 orig , PC4 orig and PC2 deri were negatively correlated with the chronological age ( P <0 05), whereas the PC3 orig was positively correlated with the chronological age ( P <0 01). The cardiovascular age thus calculated from the regression equation was significantly correlated with the chronological age among the 89 aviation personnel ( r =0.73, P <0 01). Conclusion: The cardiovascular age calculated based on a multi variate analysis of HRV, BPV and BRS could be regarded as a comprehensive indicator reflecting the age dependency of autonomic regulation of cardiovascular system in healthy aviation personnel.
文摘In this paper, an investigation into the propagation of far field explosion waves in water and their effects on nearby structures are carried out. For the far field structure, the motion of the fluid surrounding the structure may be assumed small, allowing linearization of the governing fluid equations. A complete analysis of the problem must involve simultaneous solution of the dynamic response of the structure and the propagation of explosion wave in the surrounding fluid. In this study, a dynamic adaptive finite element procedure is proposed. Its application to the solution of a 2D fluid-structure interaction is investigated in the time domain. The research includes:a) calculation of the far-field scatter wave due to underwater explosion including solution of the time-depended acoustic wave equation, b) fluid-structure interaction analysis using coupled Euler-Lagrangian approach, and c) adaptive finite element procedures employing error estimates, and re-meshing. The temporal mesh adaptation is achieved by local regeneration of the grid using a time-dependent error indicator based on curvature of pressure function. As a result, the overall response is better predicted by a moving mesh than an equivalent uniform mesh. In addition, the cost of computation for large problems is reduced while the accuracy is improved.
文摘OBJECTIVE In patients undergoing cardiac surgery,reduced preoperative ejection fraction(EF)and senior age are associated with a worse outcome.As most outcome data available for these patients are mainly from Western surgical populations involving specific surgery types,our aim is to evaluate the real-world characteristics and perioperative outcomes of surgery in senior-aged heart failure patients with reduced EF across a broad range cardiac surgeries.METHODS Data were obtained from the China Heart Failure Surgery Registry(China-HFSR)database,a nationwide multicenter registry study in China's Mainland.Multiple variable regression analysis was performed in patients over 75 years old to identify risk factors associated with mortality.RESULTS From 2012 to 2017,578 senior-aged(>75 years)patients were enrolled in China HFSR,21.1%of whom were female.Isolated coronary bypass grafting(CABG)were performed in 71.6%of patients,10.1%of patients underwent isolated valve surgery and 8.7%received CABG combined with valve surgery.In-hospital mortality was 10.6%,and the major complication rate was 17.3%.Multivariate analysis identified diabetes mellitus(odds ratio(OR)=1.985),increased creatinine(OR=1.007),New York Heart Association(NYHA)Class III(OR=1.408),NYHA class IV(OR=1.955),cardiogenic shock(OR,6.271),and preoperative intra-aortic balloon pump insertion(OR=3.426)as independent predictors of in-hospital mortality.CONCLUSIONS In senior-aged patients,preoperative evaluation should be carefully performed,and strict management of reversible factors needs more attention.Senior-aged patients commonly have a more severe disease status combined with more frequent comorbidities,which may lead to a high risk in mortality.
基金supported by the National Natural Science Foundation of China(Grant No.11672177).
文摘Cyanobacteria are the simplest organisms to have circadian clocks.The central oscillator in cyanobacteria is composed by a transcriptional/translational feedback loop(TTFL)and a post-translational oscillator(PTO).The PTO is a core pacemaker which consists of three proteins KaiA,KaiB and KaiC.KaiA stimulates the phosphorylation of KaiC,while KaiB inhibits the activity of KaiA.The cyanobacterial circadian clock is an interesting topic for researchers and many mathematical models have been constructed.However,the current mathematical models of the cyanobacterial circadian clock have been made only considering the interactions between Kai proteins.CikA,as an input pathway component,plays an essential role in the circadian clock,whose mutation results in abnormal rhythms.The regulation mechanism of CikA remains unclear.In this paper,we develop a detailed mathematical model for the cyanobacterial circadian clock with incorporation CikA-regulation.Based on numerical simulations,we explore the dynamic properties of the circadian clock regulated by CikA.The results show that the regulation of CikA makes the system more sensitive.In detail,CikA strengthens the central role of PTO and improves the adaptability of the circadian clock against the change of environment.With CikA,the system is able to modulate its period more easily to face environmental perturbation.CikA also enhances slightly the fitness of cyanobacteria.The findings of this paper can supplement the biological research and may help us more clearly understand the cyanobacterial circadian clock regulated by other proteins.
基金financial support from the National Natural Science Foundation of China (Grant Nos. 41104069, 41274124)National Key Basic Research Program of China (973 Program) (Grant No. 2014CB239006)+2 种基金National Science and Technology Major Project (Grant No. 2011ZX05014-001-008)the Open Foundation of SINOPEC Key Laboratory of Geophysics (Grant No. 33550006-15-FW2099-0033)the Fundamental Research Funds for the Central Universities (Grant No. 16CX06046A)
文摘Simultaneous-source acquisition has been recog- nized as an economic and efficient acquisition method, but the direct imaging of the simultaneous-source data produces migration artifacts because of the interference of adjacent sources. To overcome this problem, we propose the regularized least-squares reverse time migration method (RLSRTM) using the singular spectrum analysis technique that imposes sparseness constraints on the inverted model. Additionally, the difference spectrum theory of singular values is presented so that RLSRTM can be implemented adaptively to eliminate the migration artifacts. With numerical tests on a fiat layer model and a Marmousi model, we validate the superior imaging quality, efficiency and convergence of RLSRTM compared with LSRTM when dealing with simultaneoussource data, incomplete data and noisy data.
基金supported by the China Aerospace Science and Technology Corporation Eighth Research Institute Industry-University-Research Cooperation Fund(No.SAST 2020-019)。
文摘Aiming at the problem of relative navigation for non-cooperative rendezvous of spacecraft,this paper proposes a new angles-only navigation architecture using non-linear dynamics method. This method does not solve the problem of poor observability of angles-only navigation through orbital or attitude maneuvering,but improves the observability of angles-only navigation through capturing the non-linearity of the system in the evolution of relative motion. First,three relative dynamics models and their corresponding line-of-sight(LoS)measurement equations are introduced,including the rectilinear state relative dynamics model,the curvilinear state relative dynamics model,and the relative orbital elements(ROE)state relative dynamics model. Then,an observability analysis theory based on the Gramian matrix is introduced to determine which relative dynamics model could maximize the observability of angles-only navigation. Next,an adaptive extended Kalman filtering scheme is proposed to solve the problem that the angles-only navigation filter using the non-linear dynamics method is sensitive to measurement noises. Finally,the performances of the proposed angles-only navigation architecture are tested by means of numerical simulations,which demonstrates that the angles-only navigation filtering scheme without orbital or attitude maneuvering is completely feasible through improving the modeling of the relative dynamics and LoS measurement equations.
基金supported by MOST under Grant No.104-2221-E-468-007
文摘Images are generally corrupted by impulse noise during acquisition and transmission.Noise deteriorates the quality of images.To remove corruption noise,we propose a hybrid approach to restoring a random noisecorrupted image,including a block matching 3D(BM3D)method,an adaptive non-local mean(ANLM)scheme,and the K-singular value decomposition(K-SVD)algorithm.In the proposed method,we employ the morphological component analysis(MCA)to decompose an image into the texture,structure,and edge parts.Then,the BM3D method,ANLM scheme,and K-SVD algorithm are utilized to eliminate noise in the texture,structure,and edge parts of the image,respectively.Experimental results show that the proposed approach can effectively remove interference random noise in different parts;meanwhile,the deteriorated image is able to be reconstructed well.
基金Project supported by the National Natural Science Foundation of China (No.10202018)
文摘An h-adaptivity analysis scheme based on multiple scale reproducing kernel particle method was proposed, and two node refinement strategies were constructed using searching-neighbor-nodes(SNN) and local-Delaunay-triangulation(LDT) tech-niques, which were suitable and effective for h-adaptivity analysis on 2-D problems with the regular or irregular distribution of the nodes. The results of multiresolution and h-adaptivity analyses on 2-D linear elastostatics and bending plate problems demonstrate that the improper high-gradient indicator will reduce the convergence property of the h-adaptivity analysis, and that the efficiency of the LDT node refinement strategy is better than SNN, and that the presented h-adaptivity analysis scheme is provided with the validity, stability and good convergence property.
文摘近年来,复合材料层合板结构被广泛地应用于航空航天、军工、建筑工程等领域。但是,由于其几何尺寸的不准确性、材料参数的分散性、载荷环境的波动性等不确定性因素的影响,可能会对复合材料层合板结构的可靠性和安全性,以及系统的输出响应产生重大影响。由于复合材料层合板的层间黏结不良、外部应力集中等因素,当复合材料层合板结构的能量释放速率达到层间断裂韧性时,就会发生分层。因此对复合材料层合板结构的分层可靠性进行分析具有重要的意义。目前,对于复合材料层合板结构的可靠性分析主要是采用一阶可靠性方法(first order reliability method,FORM)、二阶可靠性方法(second order reliability method,SORM)和重要性抽样方法(importance sampling,IS)等传统可靠性分析方法,并将其和蒙特卡罗模拟(Monte Carlo simulation,MCS)对比。但是,当复合材料结构不确定性维度高且复杂时,这些方法不仅计算效率太低,而且不能保证其计算精度。相比于传统的可靠性分析方法,可以利用基于自适应Kriging模型集成策略和主动学习函数结合蒙特卡罗模拟(adaptive Kriging-based Monte Carlo simulation,AK-MCS)的方法,对复合材料层合板结构进行可靠性分析。而直接概率积分方法(direct probability integral method,DPIM)具有更高的计算效率和精度,特别是对于高维度和复杂的可靠性分析问题。所以,本文采用AK-MCS方法和DPIM对模式Ⅰ、模式Ⅱ和混合Ⅰ/Ⅱ模式下的复合材料层合板结构分层的可靠度进行了研究。结果表明:DPIM和AK-MCS与传统可靠性分析方法相比具有更高的计算精度和计算效率,但是DPIM以其高效的计算效率脱颖而出,尽管其精度略低于AK-MCS,但在处理随机变量更多、非线性程度更高的混合Ⅰ/Ⅱ模式下的层合板结构分层的可靠性时展现出明显优势。综合考虑精度与时效性的平衡,DPIM能够准确地评估复合材料结构的可靠度,保障其在航天航空装备等领域的安全运行。