Two measurement techniques are investigated to characterize photodetector linearity. A model for the two-tone and three-tone photodetector systems is developed to thoroughly investigate the influences of setup compone...Two measurement techniques are investigated to characterize photodetector linearity. A model for the two-tone and three-tone photodetector systems is developed to thoroughly investigate the influences of setup components on the measurement results. We demonstrate that small bias shifts from the quadrature point of the modulator will induce deviation into measurement results of the two-tone system, and the simulation results correspond well to experimental and calculation results.展开更多
Compact accelerator-based neutron source facilities are garnering attention and play an important and expanding role in material and engineering sciences,as well as in neutron science education and training.Neutrons a...Compact accelerator-based neutron source facilities are garnering attention and play an important and expanding role in material and engineering sciences,as well as in neutron science education and training.Neutrons are produced by bombarding a low-energy proton beam onto a beryllium or lithium target.In such an acceleratorbased neutron source,a radio frequency quadrupole(RFQ)is usually utilized to accelerate a high-intensity proton beam to a few MeV.This study mainly covers the highfrequency structure design optimizations of a 4-vane RFQ with pi-mode stabilizer loops(PISLs)and its RF stability analysis.A 176 MHz RFQ accelerator is designed to operate at a 10%duty factor and could accelerate an80 mA proton beam from 65 keV to 2.5 MeV within a length of 5.3 m.The adoption of PISLs ensures high RF stability,eases the operation of the accelerator,and implies less stringent alignment and machining tolerances.展开更多
This paper reports a new three-dimensional autonomous chaotic system. It contains six control parameters and three nonlinear terms. Two cross-product terms are respectively in two equations. And one square term is in ...This paper reports a new three-dimensional autonomous chaotic system. It contains six control parameters and three nonlinear terms. Two cross-product terms are respectively in two equations. And one square term is in the third equation. Basic dynamic properties of the new system are investigated by means of theoretical analysis, numerical simulation, sensitivity to initial, power spectrum, Lyapunov exponent, and Poincar~ diagrams. The dynamic properties affected by variable parameters are also analysed. Finally, the chaotic system is simulated by circuit. The results verify the existence and implementation of the system.展开更多
Fully mechanized mining with large mining height(FMMLMH)is widely used in thick coal seam mining face for its higher recovery ratio,especially where the thickness is less than 7.0 m.However,because of the great mining...Fully mechanized mining with large mining height(FMMLMH)is widely used in thick coal seam mining face for its higher recovery ratio,especially where the thickness is less than 7.0 m.However,because of the great mining height and intense rock pressure,the coal wall rib spalling,roof falling and the instability of support occur more likely in FMMLMH working face,and the above three types of disasters interact with each other with complicated relationships.In order to get the relationship between each two of coal wall,roof,floor and support,and reduce the occurrence probability of the three types of disasters,we established the system dynamics(SD)model of the support-surrounding rock system which is composed of"coal wall-roof-floor-support"(CW-R-F-S)in a FMMLMH working face based on the condition of No.15104 working face in Sijiazhuang coal mine.With the software of Vensim,we also simulated the interaction process between each two factors of roof,floor,coal wall and the support.The results show that the SD model of"CW-R-F-S"system can reveal the complicated and interactive relationship clearly between the support and surrounding rock in the FMMLMH working face.By increasing the advancing speed of working face,the support resistance or the length of support guard,or by decreasing the tipto-face distance,the stability of"CW-R-F-S"system will be higher and the happening probability of the disasters such as coal wall rib spalling,roof falling or the instability of support will be lower.These research findings have been testified in field application in No.15104 working face,which can provide a new approach for researching the interaction relationship of support and surrounding rock.展开更多
Through analyzing the kinematics of the hydraulic manipulator operating system, according to the rules for seting up the D-H coordinate system, the generalized coordinate of the manipulator system is established. The ...Through analyzing the kinematics of the hydraulic manipulator operating system, according to the rules for seting up the D-H coordinate system, the generalized coordinate of the manipulator system is established. The rotating and moving joints are selected from the mechanism as joint variables. Each generalized transformation matrix of joints is worked out. The kinematics equation at the finger end of the manipulator is calculated. The obverse solution for the manipulator is gained. The geometrical operating parameters and primary technical specification of the manipulator system are simulated through the computer. The simulative result has shown that the manipulator operating system meets the working task requirements. This research provides theoretical basis for optimizing structural parameters of the manipulator operating. So it also is justified the feasibility for mechanical manipulators to be used in the engineering equipment platform of the hydraulic excavator.展开更多
This paper describes a novel approach to explore a multidimensional design space and guide multi-actor decision making in the design of sustainable buildings.The aim is to provide proactive and holistic guidance of th...This paper describes a novel approach to explore a multidimensional design space and guide multi-actor decision making in the design of sustainable buildings.The aim is to provide proactive and holistic guidance of the design team.We propose to perform exhaustive Monte Carlo simulations in an iterative design approach that consists of tw o steps:1) preparation by the modeler,and 2) a multi-collaborator meeting.In the preparation phase,the simulation modeler performs Morris sensitivity analysis to fixate insignificant model inputs and to identify non-linearity and interaction effects.Next,a representation of the global design space is obtained from thousands of simulations using low-discrepancysequences(LPτ) for sampling.From these simulations,the modeler constructs fast metamodels and performs quantitative sensitivity analysis.During the meeting,the design team explores the global design space by filtering the thousands of simulations.Variable filter criteria are easily applied using an interactive parallel coordinate plot w hich provide immediate feedback on requirements and design choices.Sensitivity measures and metamodels show the combined effects of changing a single input and how to remedy unw anted output changes.The proposed methodology has been developed and tested through real building cases using a normative model to assess energy demand,thermal comfort,and daylight.展开更多
Reliability optimal design is an integrated approach widely adopted in engineering. The fuze components are designed by a BP neural network combined with an optimal design approach based on their multi-failure modes. ...Reliability optimal design is an integrated approach widely adopted in engineering. The fuze components are designed by a BP neural network combined with an optimal design approach based on their multi-failure modes. Their reliability probabilities in multi-failure modes are transformed into deterministic design parameters. The designed results by an example of optimizing the fuze spring under a certain reliability show that the integrated approach is practical and efficient.展开更多
The vehicle system studied in this paper is a type of complex repairable system in which the subsystems follow various failure distributions and conform to arbitrary failure and repair distributions.The failure data o...The vehicle system studied in this paper is a type of complex repairable system in which the subsystems follow various failure distributions and conform to arbitrary failure and repair distributions.The failure data of subsystems are sometimes lacking,and the reliability test sample sizes tend to be small.Monte-Carlo technique combined with Bayes method is used to evaluate its dependability(reliability and maintainability).Following the "first-in,first-out" queuing rule,the logic relation of dependability is established by means of repairing priority and event lists.Simulation outputs the entire history of a mission,statistics of reliability and maintainability parameters and provides the basic data for system reliability design and maintainability management.展开更多
In order to effectively imitate the dynamic operation characteristics of the HVDC (high voltage direct current) power transmission system at a real ±500kV HVDC transmission project, the electromechanical-electr...In order to effectively imitate the dynamic operation characteristics of the HVDC (high voltage direct current) power transmission system at a real ±500kV HVDC transmission project, the electromechanical-electromagnetic transient hybrid simulation was carried out based on advanced digital power system simulator (ADPSS). In the simulation analysis, the built hybrid model's dynamic response outputs under three different fault conditions are considered, and by comparing with the selected fault recording waveforms, the validities of the simulation waveforms are estimated qualitatively. It can be ascertained that the hybrid simulation model has the ability to describe the HVDC system's dynamic change trends well under some special fault conditions.展开更多
In order to reduce the power consumption and meet the cooling demand of every heat source component, three kinds of multi-heat source cooling system schemes were designed base on the characteristic of power split hybr...In order to reduce the power consumption and meet the cooling demand of every heat source component, three kinds of multi-heat source cooling system schemes were designed base on the characteristic of power split hybrid electric vehicle (HEV). Using the numerical simulation meth- od, the power system heat transfer model was built. By comparing the performance of three differ- ent schemes through the Simulink simulation, the best cooling system scheme was found. Base on characteristics of these cooling system structures, the reasonableness of the simulation results were analyzed and verified. The results showed that the cooling system designation based on the numerical simulation could describe the cooling system performance accurately. This method could simplify the design process, improve design efficiency and provide a new way for designing a multi-heat source vehicle cooling system.展开更多
Kaynasli District in the western Black Sea region of Turkey has long been vulnerable to frequent flood damage due to the establishment of settlements within and around stream channels without regard to fluctuating pea...Kaynasli District in the western Black Sea region of Turkey has long been vulnerable to frequent flood damage due to the establishment of settlements within and around stream channels without regard to fluctuating peakstreamflow frequencies. The aim of this research was to determine the measures needed to protect the towns and villages from this type of damage. Daily total precipitation data for 1975–2010 were analysed, and rainfall-runoff models developed to estimate the potential yearly maximum discharge from each stream of sub-watersheds dominated by forests and/or agriculture. This was then calculated for different frequencies of the yearly maximum discharge. Flood analysis and mapping was modified via the one-dimensional Hydrologic Engineering CentersRiver Analysis System software to produce potential maximum discharge and geometric data for Kaynasli Creek. As the main creek of the sub-watershed, its crosssection was shown to be insufficient and incapable of containing the maximum discharge at the 100-year frequency presumed for the watershed, and subsequently was seen as having a high level of casualty risk. It was concluded that the one dimensional model could be useful, but 2D models were more suitable for these types of watersheds.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 61574019,61674018 and 61674020the Fund of State Key Laboratory of Information Photonics and Optical Communicationsthe Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No 20130005130001
文摘Two measurement techniques are investigated to characterize photodetector linearity. A model for the two-tone and three-tone photodetector systems is developed to thoroughly investigate the influences of setup components on the measurement results. We demonstrate that small bias shifts from the quadrature point of the modulator will induce deviation into measurement results of the two-tone system, and the simulation results correspond well to experimental and calculation results.
文摘Compact accelerator-based neutron source facilities are garnering attention and play an important and expanding role in material and engineering sciences,as well as in neutron science education and training.Neutrons are produced by bombarding a low-energy proton beam onto a beryllium or lithium target.In such an acceleratorbased neutron source,a radio frequency quadrupole(RFQ)is usually utilized to accelerate a high-intensity proton beam to a few MeV.This study mainly covers the highfrequency structure design optimizations of a 4-vane RFQ with pi-mode stabilizer loops(PISLs)and its RF stability analysis.A 176 MHz RFQ accelerator is designed to operate at a 10%duty factor and could accelerate an80 mA proton beam from 65 keV to 2.5 MeV within a length of 5.3 m.The adoption of PISLs ensures high RF stability,eases the operation of the accelerator,and implies less stringent alignment and machining tolerances.
文摘This paper reports a new three-dimensional autonomous chaotic system. It contains six control parameters and three nonlinear terms. Two cross-product terms are respectively in two equations. And one square term is in the third equation. Basic dynamic properties of the new system are investigated by means of theoretical analysis, numerical simulation, sensitivity to initial, power spectrum, Lyapunov exponent, and Poincar~ diagrams. The dynamic properties affected by variable parameters are also analysed. Finally, the chaotic system is simulated by circuit. The results verify the existence and implementation of the system.
基金Financial support for this work,provided by the Priority Academic Program Development of Jiangsu Higher Education Institutions(No.SZBF2011-6-B35)the Research Fund for the Doctoral Program of Higher Education of China(No.20120095120017)the National High Technology Research and Development Program of China(No.2012AA062101)
文摘Fully mechanized mining with large mining height(FMMLMH)is widely used in thick coal seam mining face for its higher recovery ratio,especially where the thickness is less than 7.0 m.However,because of the great mining height and intense rock pressure,the coal wall rib spalling,roof falling and the instability of support occur more likely in FMMLMH working face,and the above three types of disasters interact with each other with complicated relationships.In order to get the relationship between each two of coal wall,roof,floor and support,and reduce the occurrence probability of the three types of disasters,we established the system dynamics(SD)model of the support-surrounding rock system which is composed of"coal wall-roof-floor-support"(CW-R-F-S)in a FMMLMH working face based on the condition of No.15104 working face in Sijiazhuang coal mine.With the software of Vensim,we also simulated the interaction process between each two factors of roof,floor,coal wall and the support.The results show that the SD model of"CW-R-F-S"system can reveal the complicated and interactive relationship clearly between the support and surrounding rock in the FMMLMH working face.By increasing the advancing speed of working face,the support resistance or the length of support guard,or by decreasing the tipto-face distance,the stability of"CW-R-F-S"system will be higher and the happening probability of the disasters such as coal wall rib spalling,roof falling or the instability of support will be lower.These research findings have been testified in field application in No.15104 working face,which can provide a new approach for researching the interaction relationship of support and surrounding rock.
文摘Through analyzing the kinematics of the hydraulic manipulator operating system, according to the rules for seting up the D-H coordinate system, the generalized coordinate of the manipulator system is established. The rotating and moving joints are selected from the mechanism as joint variables. Each generalized transformation matrix of joints is worked out. The kinematics equation at the finger end of the manipulator is calculated. The obverse solution for the manipulator is gained. The geometrical operating parameters and primary technical specification of the manipulator system are simulated through the computer. The simulative result has shown that the manipulator operating system meets the working task requirements. This research provides theoretical basis for optimizing structural parameters of the manipulator operating. So it also is justified the feasibility for mechanical manipulators to be used in the engineering equipment platform of the hydraulic excavator.
文摘This paper describes a novel approach to explore a multidimensional design space and guide multi-actor decision making in the design of sustainable buildings.The aim is to provide proactive and holistic guidance of the design team.We propose to perform exhaustive Monte Carlo simulations in an iterative design approach that consists of tw o steps:1) preparation by the modeler,and 2) a multi-collaborator meeting.In the preparation phase,the simulation modeler performs Morris sensitivity analysis to fixate insignificant model inputs and to identify non-linearity and interaction effects.Next,a representation of the global design space is obtained from thousands of simulations using low-discrepancysequences(LPτ) for sampling.From these simulations,the modeler constructs fast metamodels and performs quantitative sensitivity analysis.During the meeting,the design team explores the global design space by filtering the thousands of simulations.Variable filter criteria are easily applied using an interactive parallel coordinate plot w hich provide immediate feedback on requirements and design choices.Sensitivity measures and metamodels show the combined effects of changing a single input and how to remedy unw anted output changes.The proposed methodology has been developed and tested through real building cases using a normative model to assess energy demand,thermal comfort,and daylight.
文摘Reliability optimal design is an integrated approach widely adopted in engineering. The fuze components are designed by a BP neural network combined with an optimal design approach based on their multi-failure modes. Their reliability probabilities in multi-failure modes are transformed into deterministic design parameters. The designed results by an example of optimizing the fuze spring under a certain reliability show that the integrated approach is practical and efficient.
基金Sponsored by National Post Doctor Science Foundation of China (2003033180)
文摘The vehicle system studied in this paper is a type of complex repairable system in which the subsystems follow various failure distributions and conform to arbitrary failure and repair distributions.The failure data of subsystems are sometimes lacking,and the reliability test sample sizes tend to be small.Monte-Carlo technique combined with Bayes method is used to evaluate its dependability(reliability and maintainability).Following the "first-in,first-out" queuing rule,the logic relation of dependability is established by means of repairing priority and event lists.Simulation outputs the entire history of a mission,statistics of reliability and maintainability parameters and provides the basic data for system reliability design and maintainability management.
基金supported by the General Program of Chinese Postdoctoral Science Foundation under Grant No.2012M511595
文摘In order to effectively imitate the dynamic operation characteristics of the HVDC (high voltage direct current) power transmission system at a real ±500kV HVDC transmission project, the electromechanical-electromagnetic transient hybrid simulation was carried out based on advanced digital power system simulator (ADPSS). In the simulation analysis, the built hybrid model's dynamic response outputs under three different fault conditions are considered, and by comparing with the selected fault recording waveforms, the validities of the simulation waveforms are estimated qualitatively. It can be ascertained that the hybrid simulation model has the ability to describe the HVDC system's dynamic change trends well under some special fault conditions.
基金Supported by the Ministerial Level Advanced Research Foundation(40402070101)
文摘In order to reduce the power consumption and meet the cooling demand of every heat source component, three kinds of multi-heat source cooling system schemes were designed base on the characteristic of power split hybrid electric vehicle (HEV). Using the numerical simulation meth- od, the power system heat transfer model was built. By comparing the performance of three differ- ent schemes through the Simulink simulation, the best cooling system scheme was found. Base on characteristics of these cooling system structures, the reasonableness of the simulation results were analyzed and verified. The results showed that the cooling system designation based on the numerical simulation could describe the cooling system performance accurately. This method could simplify the design process, improve design efficiency and provide a new way for designing a multi-heat source vehicle cooling system.
文摘Kaynasli District in the western Black Sea region of Turkey has long been vulnerable to frequent flood damage due to the establishment of settlements within and around stream channels without regard to fluctuating peakstreamflow frequencies. The aim of this research was to determine the measures needed to protect the towns and villages from this type of damage. Daily total precipitation data for 1975–2010 were analysed, and rainfall-runoff models developed to estimate the potential yearly maximum discharge from each stream of sub-watersheds dominated by forests and/or agriculture. This was then calculated for different frequencies of the yearly maximum discharge. Flood analysis and mapping was modified via the one-dimensional Hydrologic Engineering CentersRiver Analysis System software to produce potential maximum discharge and geometric data for Kaynasli Creek. As the main creek of the sub-watershed, its crosssection was shown to be insufficient and incapable of containing the maximum discharge at the 100-year frequency presumed for the watershed, and subsequently was seen as having a high level of casualty risk. It was concluded that the one dimensional model could be useful, but 2D models were more suitable for these types of watersheds.